
The Range Skyline Query

Theodoros Tzouramanis
University of the Aegean,

83200 Samos, Greece
ttzouram@aegean.gr

Eleftherios Tiakas
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
tiakas@csd.auth.gr

Apostolos N. Papadopoulos
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
papadopo@csd.auth.gr

Yannis Manolopoulos
Open University of Cyprus,

2220 Latsia, Cyprus
yannis.manolopoulos@ouc.ac.cy

ABSTRACT
The range skyline query retrieves the dynamic skyline for every
individual query point in a range by generalizing the point-based
dynamic skyline query. Its wide-ranging applications enable users
to submit their preferences within an interval of 'ideally sought'
values across every dimension, instead of being limited to submit
their preference in relation to a single sought value. This paper con-
siders the query as a hyper-rectangle iso-oriented towards the axes
of the multi-dimensional space and proposes: (i) main-memory al-
gorithmic strategies, which are simple to implement and (ii) sec-
ondary-memory pruning mechanisms for processing range skyline
queries efficiently. The proposed approach is progressive and I/O
optimal. A performance evaluation of the proposed technique
demonstrates its robustness and practicability.

CCS CONCEPTS
•Theory of computation → Theory and algorithms for appli-
cation domains → Database theory → Data structures and al-
gorithms for data management.

KEYWORDS
Algorithms; progressive skyline search; index-based query pro-
cessing; multi-dimensional data; experimentation.

ACM Reference format:

Theodoros Tzouramanis, Eleftherios Tiakas, Apostolos N. Papadopoulos, and

Yannis Manolopoulos. 2018. The Range Skyline Query. In Proceedings of the

27th ACM International Conference on Information and Knowledge Ma-

nagement, Torino, Italy, October 22-26, 2018 (CIKM 2018), 10 pages.

https://doi.org/10.1145/3269206.3271693

1 INTRODUCTION
Its role in many real life applications, including multi-criteria deci-
sion-making, market analysis, and quantitative economics research,
has led data management research to focus on the skyline query [2].
Given a dataset P of points in an n-dimensional (n-d) space, the sky-
line query returns all the points of P which are not dominated by
another point of P. A point dominates another point if it is as good,
or better, in all dimensions and strictly better in at least one dimen-

sion. Without loss of generality, smaller values are preferred, i.e. it
is assumed that the min function is used to determine the goodness
along every dimension.

Some applications require that the skyline of a dataset be dynam-
ically generated on the basis of a user's predicate, rather than be
static. A tourist is looking for cheap hotels close to the beach: the
query point q (qx, qy) in Figure 1(a) might represent the preference
expressed for a qx euros priced hotel (x-axis) at a qy meters distance
from the beach (y-axis). For an ‘ideal’ hotel q, all interesting hotels
not dominated by others in relation to (hereafter i.r.t.) q must be
retrieved. A skyline analysis will provide recommendations for the
best match: Every data point p corresponding to a hotel is projected
onto a new space, in which the point’s coordinate in every dimen-
sion equals the absolute difference between the data point p and the
query point q. Figure 1(a) demonstrates the result. A static skyline
in the projected space includes the points e, i and l.

d'

j' c

x

y

f

h

k

i

b

Ο

j

e

i'

k' g'
b'

g

a

d

a'
l
x'

A

D

B

C

q

y
'

h'

i'

B C

 y

'

A

E
j'

x

 y

qs

f

h

k

i

b

Ο

j

e

g'

g

a

d d'

l Ω
x'

y
''

x''

H G I

D F h'

b'

a'

k'
qe

c

 (a) (b)

Figure 1: (a) The dynamic skyline set SSq(P) = {e, i, l} of a dataset
P of points i.r.t. a single query point q. (b) On the computation
of the range skyline of P i.r.t. a 2-d rectangle Ω.

Figure 1(a) illustrates a (point-based) dynamic skyline [16] i.r.t.
the query point q. In the context of n-d databases, static and dyna-
mic skyline queries have been examined in applications with pre-
cise [2, 4, 12], incomplete [10] and uncertain data [23], both on cen-
tralized; and parallel and distributed [5] databases. Methods for
continuous skyline computation on streaming [11], moving objects
[20] and other emerging applications have also been proposed.

Lin et al. [14] coined the term range-based skyline query for a
query input which is not necessarily going to be a single point.
Wang et al. [24] were the first to propose an algorithm for range-
based dynamic skyline query processing i.r.t. all the infinite query
points in a range but their method comes at a computational cost.

This paper focuses on a more general case, the range skyline
query. Given an n-d dataset, the range skyline query retrieves the
dynamic skyline of the dataset i.r.t. every individual point in an n-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CIKM’18, October 22-26, 2018, Torino, Italy.
© 2018 Association of Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271693

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

47

https://doi.org/10.1145/3269206.3271693
https://doi.org/10.1145/3269206.3271693

d query hyper-rectangle. The resulting set contains tuples of the
form <data object, sub-region>, such that the ‘data object’ is a dy-
namic skyline point of the dataset i.r.t. the corresponding ‘sub-
region’ of the given hyper-rectangle, and not necessarily i.r.t. the
whole query hyper-rectangle, as was investigated by [24]. Con-
sider a user who posts a query targeting an interval of ‘ideal’ va-
lues on every dimension, instead of a precise value, e.g. targeting
the best hotels at between 50 and 100 euros per night and located
between 200 and 500 meters from the beach. Any hotel belonging
to the dynamic skyline i.r.t. any query point (and not necessarily
i.r.t. all the query points) in the given 2-d range might be eligible.
Consider a service-provider, offering customized fitness and
health advice: in such a context, the user, asked to provide confi-
dential information (e.g. blood pressure etc.), feels more comforta-
ble submitting this personal information in an opaque manner.
Submitting an interval of values, instead of precise values, in eve-
ry dimension, would produce a n-d hyper-rectangle query pattern,
rather than a point query.

This approach can also handle the multi-source skyline query
[6] that can retrieve the points of a dataset not dominated by a set
of query points, also known as the spatial skyline query [19], a
special case of the (point-based) dynamic skyline query. Our
method deals with the multi-source skyline query with a single R-
tree traversal, after drawing a range that includes all the provided
sources and by searching, in the results, for the data points that
belong to the dynamic skyline of every one of these sources.

The proposed solution can be an alternative to the caching me-
chanisms (e.g. [18]) put forward for speeding up point-based dy-
namic skyline queries by using the information of other previous-
ly processed point-based dynamic skyline queries. Such queries,
issued in relatively close time instants (e.g. in a read-heavy data-
base setting), representing relatively close query points on the
space, can be grouped and processed in batches, through issuing a
single range skyline query, the range of which will be the MBR of
all the query points that the users have submitted. The range sky-
line search results can then be refined in main memory to extract
the results of the individual point-based dynamic skyline queries.

To our knowledge, this is the first effort to tackle (dynamic)

range skyline query processing in spatial and multi-dimensional
databases. The technical contributions of this paper are that:
(1) it introduces and formalizes the (dynamic) range skyline que-

ry, together with a new dominant method for evaluating mul-
ti-dimensional data using the range skyline operator.

(2) it proposes a progressive algorithm that exploits a number of
interesting properties and pruning strategies to process the
above query efficiently in n ≥ 2 dimensions, and i.r.t. two
forms of the predicate of the query, i.e. i.r.t. a line segment
parallel to an axis and i.r.t. a hyper-rectangle iso-oriented to-
wards the axes of the n-d space.

(3) it experimentally verifies that the proposed algorithm is I/O
optimal and robust in practical terms.

Below, Section 2 provides some important definitions and nota-
tions; Section 3 develops an operational and optimal solution for
range skyline computation; The CPU and I/O costs obtained ex-
perimentally are analyzed in Section 4; Section 5 discusses the
advantages and limitations of related earlier work; and Section 6
summarizes and points to future directions for research.

2 FORMULATING THE PROBLEM
Let S be an n-d space and P be a dataset of points onto S. A point
p  P can be represented as p (p1, p2, ..., pn), where p1, p2, ..., pn are
its coordinate values. For the sake of simplicity we assume non-
negative coordinate values.

DEFINITION 1 – POINT-BASED DYNAMIC DOMINANCE. Given a dataset
P of points in an n-d space S and a reference point q (q1, q2, ..., qn)  S,
a data point p (p1, p2, ..., pn)  P dynamically dominates another data
point r (r1, r2, ..., rn)  P i.r.t. q, denoted as p  q r, if and only if ∀ i 
{1, 2, …, n} we have |qi − pi|  |qi − ri| and  j  {1, 2, …, n}: |qj − pj| <
|qj − rj|.

DEFINITION 2 – DYNAMIC DOMINANCE (GENERALIZATION OF DE-
FINITION 1). Given a dataset P of points in an n-d space S and a refer-
ence hyper-region Q  S, a data point p  P dynamically dominates
another data point r  P i.r.t. Q, denoted as p  Q r, if and only if
 q  Q we have p  q r.

DEFINITION 3 – DYNAMIC SKYLINE QUERY. Given a dataset P of points
in an n-d space S and a reference hyper-region Q  S, the dynamic
skyline query of P i.r.t. Q retrieves the set of data points SSQ(P)  P
which are not dynamically dominated by any other data point in P
i.r.t. Q, that is, SSQ(P) = {p  P | ∄ r  P: r  Q p}. The points in SSQ(P)
are called dynamic skyline points of P i.r.t. Q.

Q is called the query region. When Q shrinks to a single point, the
query represents a dynamic skyline query i.r.t. a single query point,
the computation of which is studied in [16]. The dynamic skyline of
P i.r.t. a query point q (q1, ..., qn) can be computed as the static sky-
line query of P after projecting all data points p (p1, ..., pn)  P of the
original space onto a new dynamic data space, in which q is the
origin-point. The Euclidean distances to q on every dimension are
used as mapping functions for the data points. Therefore, every da-
ta point p of the original space will be projected onto point p' (|q1 −
p1|, ..., |qn – pn|).

Figure 1(a) shows that the dynamic skyline of the dataset P i.r.t. a
query point q consists of the set of points SSq(P) = {e, i, l}. Point a,
dynamically dominated by point i, is not part of SSq(P).

The computation of the dynamic skyline of P i.r.t. a region Q is
much more complicated than the computation of the point-based
dynamic skyline because it demands that every data point be pro-
jected i.r.t. every one of the - infinite in number - query points
q  Q. Figure 1(b) illustrates such an example in the 2-d space, in
which Q is a rectangle Ω, i.r.t. which the user might ask for the dy-
namic skyline of a dataset P, i.e. the set SSΩ(P) of the data points
which are not dynamically dominated by any other data point in P
i.r.t. every query point q in Ω.

DEFINITION 4 – PARTIAL DYNAMIC DOMINANCE. Given a dataset P of
points in an n-d space S and a reference hyper-region Q  S, a point p
 P partially dynamically dominates another point r  P i.r.t. Q, de-
noted as p  P

Q r, if and only if ∃ q  Q: p  q r.

DEFINITION 5 – (DYNAMIC) RANGE SKYLINE QUERY. Given a dataset P
of points in an n-d space S and a reference hyper-rectangle Ω  S iso-
oriented towards the axes of S, the range skyline query of P i.r.t. Ω re-
trieves the dynamic skylines of P i.r.t. every reference point in Ω. The
answer to the query is a set RSSΩ(P) of tuples of the form <p, Qp>,
where p  P is a data point and Qp  Ω is a hyper-region, i.r.t. which
the point p is a dynamic skyline point of P, that is, RSSΩ(P) =

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

48

{<p, Qp>: Qp  Ω and p  SSQp(P)}. The data points in RSSΩ(P) are
called range skyline points of P i.r.t. Ω.

The query predicate Ω can only be a hyper-rectangle iso-
oriented towards the axes of the n-d space, since it expresses the
user’s preference, which consists of an interval of values on every
dimension. On the basis of Figure 1(b), one tuple in RSSΩ(P) is the
<e, Ω – [(7, 5), (10, 8)]>1, which means (see below) that e  SSΩ – [(7,

5), (10, 8)](P), where the range [(7, 5), (10, 8)] represents a rectangle
(boundaries inclusive), with bottom-left-most vertex (7, 5) and top-
right-most vertex (10, 8).

3 RANGE SKYLINE SEARCH
As discussed, the computation of the dynamic skyline of a dataset P
i.r.t. a query point q on the data space determines that a new pro-
jection space needs to be created, for which the point q will be the
origin-point. The dynamic projection of every data point onto this
new space is defined on the basis of the following theorem:

THEOREM 1. For the computation of the dynamic skyline of a dataset
P of points i.r.t. a reference query point q (q1, q2, ..., qn), every data
point p (p1, p2, ..., pn)  P needs to be projected onto a point p' with
coordinate values:

𝑝𝑖
′ = {

2𝑞𝑖 − 𝑝𝑖 , 𝑖𝑓 𝑝𝑖 ≤ 𝑞𝑖

𝑝𝑖 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 ;  i  {1, 2, …, n} (1)

PROOF. The initial focus is on the 2-d space, with a generalization
subsequently to multiple dimensions.

As Figure 1(a) shows, the new 2-d projection space O'x'y', with O'
≡ q, splits the original space into four regions, A, B, C and D. Then,
with regard to its original position, for the computation of the dy-
namic skyline of P i.r.t. q, every point p (px, py)  P will need to be
projected onto point:

p' (2qx − px, 2qy − py), if px  qx and py  qy
p' (px, 2qy − py), if qx  px and py  qy
p' (2qx − px, py), if px  qx and qy  py
p' (px, py), if qx  px and qy  py

The above set of equations shows that if px  qx then p'x = 2qx–px,
otherwise p'x = px.

2. Also, if py  qy then p'y = 2qy–py, otherwise
p'y = py. Intuitively, every data point that does not lie in region D is
projected onto its symmetrical point inside D i.r.t. the contour of D
(i.e. using the O'x'y' axes).

Hence, Equation (1) truly holds for every dimension of the n-d
space. This can also be proved by mathematical induction based on
the 2d partitions into which q divides the original space, by consid-
ering that the coordinate value, which Equation (1) computes for
every dimension, is independent from the computed coordinate
values in the other dimensions. 

The algorithm for processing the dynamic skyline SSq(P) of a da-
taset P i.r.t. a query point q was introduced an analyzed in [16]. Ac-
cording to Definition 3, a data point e  SSq(P) if ∄ p  SSq(P): p  q
e. The algorithm for this dominance examination uses the projected

1 For the sake of simplicity, the expression “Ω – Ω1” represents the sub-

region of Ω, which does not include the rectangle Ω1.
2 Evidently, if px = qx then the transformed version p'x of px can be calcu-

lated on the basis of either the p'x = 2qx–px, or the p'x = px formulas,
since they both provide the same result.

versions of p and e i.r.t. q, the coordinates of which are calculated
using Equation (1).

3.1 Two-dimensional Space

3.1.1 Single-dimensional Query Intervals
The basis of our approach is the case of 1-d query intervals. The
user’s preference are assumed to consists of a precise value on the
y-axis and of an interval of values on the x-axis; the created query
predicate is a line segment aligned with the x-axis (idem for a line
segment aligned with the y-axis). On the basis of Figure 1, Figure
2(a) illustrates such a line segment Lx [qs, qe] with end-points
qs (qsx, qsy) and qe (qex, qey), where qsx  qex, and qsy = qey.

 y

'

j'

x

y

qs

f

h

k

i

b

Ο

j

e

i'

k' g' b'

g

a a'
l

Lx qe x'

y'

'

A

E

B

D F

C

d'

c
h'

d

c

x

y

f

h

k

i

b

Ο

j

e

g

a

d

l
Nd

Ne

Nf
Ng

Nc

Nb
Na

qe qs Lx

 (a) (b)

Figure 2: (a) On the computation of the (dynamic) range sky-
line of a dataset P i.r.t. a line segment Lx aligned with the
x-axis. (b)The R-tree built on top of the example dataset P.

Figure 2(a) illustrates the division of the original space into six
regions A, B, C, D, E and F on the basis of the location of Lx on the
workspace: the following properties should be kept in mind:

PROPERTY 1. Assuming a data point p in the region A / region D, its
projected point p' i.r.t. every different query point q  Lx will belong
on a line segment aligned to the x-axis that will be double the length
of Lx.

PROPERTY 2. Assuming a data point p in the region C / region F, its
projected point p' i.r.t. every different q  Lx will have a fixed position,
independently of the position of q on Lx.

PROPERTY 3. Assuming a data point p (px, py) in the region B / re-
gion E, the projected point p' i.r.t. every different q  Lx [qs, qe] will
belong on a line segment which will be aligned with the x-axis and it
will have a length that is equal to 2(qex – px).

Due to space limitation, the proofs of the above properties are
not included. Figure 2(a) illustrates the projections (as red line seg-
ments parallel to the x-axis) of all the points in the example dataset
P i.r.t. every individual query point q  Lx.

3.1.1.1 Main-Memory Dynamic Dominance Computation

Assuming two points p, r  P, to find whether p  P
Lx r, and re-

calling Equation (1), does ∃ q  Lx: p  q r? The answer lies in:

THEOREM 2. Given a dataset P of points in a 2-d space S, two points
p(px,py), r(rx,ry)  P and a reference line segment Lx[qs, qe]  S
aligned with the x-axis, where qs(qsx,qsy) is the left-most end-point
and qe(qex,qey) is the right-most end-point of Lx, Table 1 specifies the
range of coordinate values, per axis of the space, of all points q  Lx
i.r.t. which p q r holds.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

49

Table 1: A table specifying the range of the coordinate values
on the i-axis of all the points q  Lx i.r.t. which p q r holds.

Case
id

Condition Additional condition Range [min, max] of
the coordinates on the
i-axis of the points
q  Lx for which we

have p q r
pi < ri
1 pi < ri ≤ qsi ≤ qei 

2 pi ≤ qsi ≤ ri ≤ qei
if qsi ≤

𝑝𝑖+𝑟𝑖

2
 then: [qsi,

𝑝𝑖+𝑟𝑖

2
]

else: 

3 pi ≤ qsi ≤ qei ≤ ri

if qsi ≤
𝑝𝑖+𝑟𝑖

2
 ≤ qei then: [qsi,

𝑝𝑖+𝑟𝑖

2
]

else if qei ≤
𝑝𝑖+𝑟𝑖

2
 then: [qsi, qei]

else: 

4 qsi ≤ pi ≤ qei ≤ ri
if

𝑝𝑖+𝑟𝑖

2
 ≤ qei then: [qsi,

𝑝𝑖+𝑟𝑖

2
]

else: [qsi, qei]

5 qsi ≤ pi < ri ≤ qei [qsi,
𝑝𝑖+𝑟𝑖

2
]

6 qsi ≤ qei ≤ pi < ri [qsi, qei]
ri < pi
7 ri < pi ≤ qsi ≤ qei [qsi, qei]

8 ri ≤ qsi ≤ pi ≤ qei
if qsi ≤

𝑝𝑖+𝑟𝑖

2
 then: [

𝑝𝑖+𝑟𝑖

2
, qei]

else: [qsi, qei]

9 ri ≤ qsi ≤ qei ≤ pi

if qei <
𝑝𝑖+𝑟𝑖

2
 then: 

else if qsi ≤
𝑝𝑖+𝑟𝑖

2
 ≤ qei then: [

𝑝𝑖+𝑟𝑖

2
, qei]

else: [qsi, qei]

10 qsi ≤ ri ≤ qei ≤ pi
if

𝑝𝑖+𝑟𝑖

2
 ≤ qei then: [

𝑝𝑖+𝑟𝑖

2
, qei]

else: 

11 qsi ≤ ri < pi ≤ qei [
𝑝𝑖+𝑟𝑖

2
, qei]

12 qsi ≤ qei ≤ ri < pi 
pi = ri
13 pi = ri [qsi, qei]

PROOF. The dynamic dominance investigation between the data
points p (px, py) and r (rx, ry) i.r.t. a query point q (qx, qy) 
Lx [qs (qsx, qsy), qe (qex, qey)] involves the following inequalities:

p  q r ⇔[(
𝑝′𝑥 < 𝑟′𝑥

𝑝′𝑦 ≤ 𝑟′𝑦
) 𝑜𝑟 (

𝑝′𝑥 ≤ 𝑟′𝑥

𝑝′𝑦 < 𝑟′𝑦
)] ⇔ [(

𝑝′𝑥 </≤ 𝑟′𝑥

𝑝′𝑦 ≤/< 𝑟′𝑦
)]

in which “</≤” means “< or ≤” and  i  {x, y} the parameters p'i
and r'i are the dynamic coordinate values on the x- and y- axes of p
and r, respectively, i.r.t. q, as they are calculated using Equation (1).
We shall examine the inequalities for one of the axes, which we
shall name the i-axis, where i  {x, y}, which means that, by consid-
ering the symbols “x” or “y” instead of “i”, we can have the coordi-
nates on every axis of the space.

Therefore, in relation to the i-axis, if we assume that pi < ri, then,
according to Figure 2(a), six cases exist in respect of the spatial or-
der between the points p, r, qs and qe on the workspace, as this or-
der is projected onto their coordinate values on the i-axis, i.e. it
holds that either pi < ri ≤ qsi or pi ≤ qsi ≤ ri ≤ qei or pi ≤ qsi ≤ qei ≤ ri
or qsi ≤ pi ≤ qei ≤ ri or qsi ≤ pi < ri ≤ qei, or qei ≤ pi < ri. If, however,
we assume that ri < pi, then, according to Figure 2(a), six cases exist
in relation to the spatial order between the points p, r, qs and qe, as
this order is projected onto their coordinate values on the i-axis, i.e.
it holds that either ri < pi ≤ qsi or ri ≤ qsi ≤ pi ≤ qei or ri ≤ qsi ≤ qei ≤ pi

or qsi ≤ ri ≤ qei ≤ pi or qsi ≤ ri < pi ≤ qei, or qei ≤ ri < pi. If, finally, we
assume that pi = ri, then one additional case exists.

Due to space limitation, we shall prove only one of these cases.

Case 1 (i.e. pi < ri ≤ qsi): In this case, the inequality p’i </≤ r’i, accord-
ing to Equation (1), becomes:

p’i </≤ r’i ⇔ 2qi – pi </≤ 2qi – ri ⇔ pi >/≥ ri

therefore p cannot dynamically dominate r i.r.t. the whole line seg-
ment Lx since by assumption we have pi < ri. 

Theorem 2 is about reducing the cost of examining the partial
dynamic dominance relation between two data points i.r.t. a line
segment, and about incurring, instead, the markedly lower cost of a
search into a look-up table that can be kept into main memory. In
particular, if we assume two data points p, r  P, then, according to
Theorem 2, if Table 1 indicates that, as concerns the coordinates on
the y-axis, the data point p can dynamically dominate the data point
r, it will follow that Table 1, again, will define the coordinates on
the x-axis of the left-most and of the right-most end-points of the
line sub-segment (if any such line sub-segment exists) Lp  Lx, i.r.t.
which p  Lp r holds. For example, on the basis of Figure 2(a), to
determine whether there is any line sub-segment Lp  Lx i.r.t.
which h (2.5, 3.5)  Lp g (1.5, 1) holds, we consult Table 1. Thus,
since gx < hx < qsx and gy < hy < qsy, Table 1 specifies that as con-
cerns every axis separately, h can dynamically dominate g i.r.t. eve-
ry possible coordinate value per axis that the query point q  Lx
can take, therefore, finally, h  Lx g holds.

Lemma 1 follows from Theorem 2. Due to space limitation, the
proofs of the lemmas are not included.

LEMMA 1: Given a dataset P of points, two points p, r  P and a line
segment Lx aligned with the x-axis, for which p  P

Lx r holds, then p
dynamically dominates r i.r.t. only one single sub-segment Lp  Lx,
which also includes the left-most or/and the right-most end-points of Lx.

3.1.1.2 Secondary-Memory Range Skyline Computation

The R-tree [8] will serve as the backbone spatial index to process
the range skyline query. The proposed algorithm employs a branch-
and-bound technique to prune the search space, as does the algo-
rithm for the point-based dynamic skyline query [16]. Lemma 2
below speeds-up the algorithm, which will be described later.

LEMMA 2. Given a dataset P of points, a point p  P and a line seg-
ment Lx aligned with the x-axis, if p is a range skyline point of P i.r.t.
Lx then only one single sub-segment Lp  Lx exists for which
<p, Lp>  RSSLx(P) i.e. only one single sub-segment Lp  Lx exists,
i.r.t. which the point p is a dynamic skyline point of P.

Algorithm 1 sets out the pseudo-code of the algorithm for pro-
cessing the range skyline query i.r.t. a reference line segment Lx
aligned with the x-axis. Based on Theorem 2 and Lemmas 1-2, it
uses two priority queues H and H’ with pairs of the form
<e, Le [qes, qee]>, where e is an R-tree entry (a point or an MBR) and
Le is the sub-segment of Lx, i.r.t. which e has not yet been found to
be dynamically dominated by any data point in RSSLx. All entries in
H have the same left-most end-point qes of their Le and are sorted
in ascending order of the MINDIST minimum distance of e to qes.

In the beginning, the algorithm in Line 2 pushes into H all the
entries e of the R-tree root in the form <e, Lx>. Then, in Lines 5-6
the algorithm removes the top entry <e, Le> of H and, using Theo-

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

50

Algorithm 1: The Range Skyline RSSLx(P)

Input: The dataset P indexed using an R-tree R

 and the query line segment Lx[qs, qe].

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

RSSLx = ∅; H = H’ = ∅;

Insert into H a pair of the form <e, Lx>

 for every entry e in the root of R;

REPEAT

 WHILE H  ∅ DO

 Remove top entry <e, Le [qes, qee]> of H;

 IF ∃ Lee[qees,qeee]  Le: ∄ <p,Lp>  RSSLx

 for which Lee  Lp and p  Lee e THEN

 IF qees ≠ qes THEN Insert <e,Lee> in H';

 ELSE

 IF e is an MBR THEN

 FOR every child ee of e DO

 IF ∃ Leee [qeees, qeeee]  Lee:

 ∄ <p, Lp>  RSSLx for which

 Leee  Lp and p  Leee ee THEN

 IF qeees ≠ qees THEN Insert <ee,

 Leee> into H';

 ELSE Insert <ee, Leee> into H;

 ELSE

 FOR every pair <p, Lp>  RSSLx for

 which Lee  Lp ≠  DO

 IF ∃ Lpp  (Lp  Lee): e Lpp p THEN

 Update <p, Lp – Lpp> into RSSLx;

 Insert <e, Lee> into RSSLx;

 Move into H the pairs <e, Le[qes,qee]>  H'

 with the point qes that is closest to qs;

UNTIL H' = ∅;

Return RSSLx;

Algorithm 1: Computation of the range skyline of a dataset P
i.r.t. a query line segment Lx [qs, qe] aligned with the x-axis.

rem 2, checks whether a sub-segment Lee  Le exists, i.r.t. which e
is not dynamically dominated by any data point in RSSLx. If such a
sub-segment Lee exists, then e belongs to a branch of the R-tree
which can contain eligible points for the range skyline. Therefore, if
Lee is not the left-most sub-segment of Le, then in Line 7 the entry
<e, Lee> is inserted into the auxiliary heap H’ for future pro-
cessing; otherwise, in Line 9 the algorithm checks whether e is an
intermediate R-tree node entry or a data point.

In particular, if e is an intermediate R-tree node entry, then its
MBR is expanded and, in Lines 10-11, for every entry ee, the algo-
rithm checks (using Theorem 2) whether a sub-segment Leee  Lee
exists, i.r.t. which ee is not dynamically dominated by any point in
the range skyline set RSSLx. If such a sub-segment Leee exists, then
if Leee is not the left-most sub-segment of Lee, in Line 12 the entry
<ee, Leee> is inserted into the auxiliary heap H’ for future pro-
cessing; otherwise in Line 13 it is inserted into heap H.

Else, if in Line 9 it is discovered that e is a data point, then e is
definitely a dynamic skyline point i.r.t. the segment Lee, or i.r.t. its
left-most sub-segment, the length of which will be determined later,
in the next steps of the algorithm. However, if the RSSLx set is not
empty, then before inserting into it the entry <e, Lee>, in Lines 15-
17 for every entry <p, Lp> in RSSLx for which Lp  Lee ≠  it is

checked (using Theorem 2, again) whether e dynamically dominates
p i.r.t. the right-most sub-segment Lpp of Lp3. If such a domination
exists, then the entry of p is updated in RSSLx from <p, Lp> to
<p, Lp–Lpp> by removing the sub-segment Lpp from Lp.

The steps in Lines 4-18 are repeated for every subsequent top en-
try e of H. When H empties for the first time, then RSSLx stores all
the data points which are dynamic skyline points i.r.t. at least the
left-most end-point qs of Lx. Upon the termination of this process,
all R-tree entries, which are dynamically dominated by data points
in RSSLx i.r.t. qs, but which might be not dynamically dominated
i.r.t. the whole line segment Lx, have been moved to the auxiliary
heap H’ for re-examination. For this reason, in Line 19, one batch of
the entries in H' is moved back into H: these entries are the pairs
<e, Le [qes,qee]> with the left-most end-point qes that is closest to
qs. Then, the loop in Lines 4-18 is executed again to process the
new content of H, as the corresponding algorithm for the point-
based dynamic skyline does [16]: this time, the loop is executed i.r.t.
the new query point qes selected earlier, in Line 19.

When in Line 20 it is discovered that both the H and H’ heaps are
empty, then the algorithm terminates and the RSSLx set will contain
entries of the form <p, Lp>, in which p is a dynamic skyline point of
P i.r.t. the sub-segment Lp  Lx; therefore, p is a range skyline point
of P i.r.t. Lx.

LEMMA 3: Algorithm 1 computes its output results progressively.

The following lemmas jointly help to verify the correctness of
the proposed algorithm, i.e. that no false hits and misses occur:

LEMMA 4. Every data point of P that is added into the RSSLx set du-
ring the execution of Algorithm 1 is guaranteed to be a final range
skyline point of P i.r.t. Lx.

LEMMA 5. If upon the termination of the execution of Algorithm 1
we have <p, Lp>  RSSLx(P), then ∄ q  Lp: ∃ e  P for which
e  q p holds.

LEMMA 6. There is no other range skyline point of P i.r.t. Lx other
than those in the RSSLx set.

Below, Algorithm 1 is proved to be I/O optimal, meaning that: (i)
it visits only the R-tree nodes that demonstrably can contain range
skyline points, and (ii) it does not retrieve the same R-tree node
twice from the secondary memory.

THEOREM 3. The number of R-tree nodes accessed by Algorithm 1 is
optimal.

PROOF. To prove that Algorithm 1 expands only the R-tree inter-
mediate entries that may contain range skyline points, let’s assume
that it also expands an R-tree intermediate entry e which cannot
contain range skyline points. Without loss of generality, we consi-
der a range skyline point p for which p  Lx e holds; therefore, e
cannot contain any range skyline point. Then, in line with Defini-
tion 1, we understand that the distance from p to every point q  Lx
is shorter than the corresponding MINDIST distance from e to q.
Hence, p will be processed by Algorithm 1 before e. Therefore, in
Line 6 of the algorithm, the entry e will have been pruned by p, con-
tradicting the fact that e is visited and expanded.

3 According to Lemma 4 below, since p is already in the RSSLx set, the data

point e cannot dynamically dominate p i.r.t. the left-most sub-segment of
Lp. Therefore, by taking into consideration Lemma 1, if e dynamically

dominates p, this can be done only i.r.t. the right-most sub-segment of Lp.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

51

Finally, we need to establish that an R-tree entry is not retrieved
multiple times from the secondary memory. This is straightforward
because the R-tree entries are retrieved from the secondary memo-
ry to be inserted into heap H (and expanded) one time at the most.
Entries of heap H that represent branches of the R-tree, the pro-
cessing of which is postponed for a later execution of the loop in
Lines 3-20, are moved temporally into the auxiliary heap H'. 

We now follow the execution of Algorithm 1 for the running e-
xample of the dataset in Figure 2(a) for the computation of the
range skyline i.r.t. a line segment Lx [qs, qe] aligned with the x-axis,
with end-points qs (6, 5) and qe (10, 5). We assume that the da-
taset is indexed using the R-tree that is demonstrated in Figure 2(b).
The contents of heaps H and H’, as well as the contents of the RSSLx
set during the execution of the algorithm, are illustrated in Table 2.

Table 2: Steps of an example execution of Algorithm 1.
Step Action H content H' content RSSLx content

1 Access
R-tree root

<Nc, [qs, qe]>, <Nb, [qs, qe]>  

2 Expand Nc <Nf, [qs, qe]>, <Nb, [qs, qe]>,
<Ng, [qs, qe]>

 

3 Expand Nf <Nb, [qs, qe]>, <i, [qs, qe]>, <h, [qs,
qe]>, <g, [qs, qe]>, <Ng, [qs, qe]>

 

4 Expand Nb <Nd, [qs, qe]>, <i, [qs, qe]>, <h, [qs,
qe]>, <g, [qs, qe]>, <Ne, [qs, qe]>,
<Ng, [qs, qe]>

 

5 Expand Nd <i, [qs, qe]>, <c, [qs, qe]>, <h, [qs,
qe]>, <b, [qs, qe]>, <a, [qs, qe]>,
<g, [qs, qe]>, <Ne, [qs, qe]>,
<Ng, [qs, qe]>

 

6 Examine i <c, [qs, qe]>, <h, [qs, qe]>, <b, [qs,
qe]>, <a, [qs, qe]>, <g, [qs, qe]>,
<Ne, [qs, qe]>, <Ng, [qs, qe]>

 <i, [qs, qe]>

7 Examine c <h, [qs, qe]>, <b, [qs, qe]>,
<a, [qs, qe]>, <g, [qs, qe]>,
<Ne, [qs, qe]>, <Ng, [qs, qe]>

<c, ((8, 5),
qe]>

<i, [qs, qe]>

...
19 Examine k  <c, ((8 ,5),

qe]>, <f,
((9.5,5), qe]>

<i, [qs, qe]>,
<e, [qs, (7,5))>,
<l, [qs, qe]>

20 Move c
from H'
into H

<c, ((8, 5), qe]> <f, ((9.5,5),
qe]>

<i, [qs, qe]>,
<e, [qs, (7,5))>,
<l, [qs, qe]>

21 Examine c 

...

The algorithm begins with the R-tree root and inserts its MBRs
Nc and Nb into heap H, in the form <Nc, [qs, qe]>, <Nb, [qs, qe]>,
sorted according to the MINDIST distance of the MBRs to qs. Then,
the entry Nc is expanded. This process removes the entry from Η
and inserts the MBRs of its entries Nf and Ng into H. The next entry
to be expanded is Nf, and its data points i, h and g are inserted into
H. The projected versions of points i, h and g i.r.t. qs are displayed
in Figure 2(a). The next MBRs to be expanded are Nb and Nd.

The first entry of H that corresponds to a data point is the nea-
rest neighbour point i of qs, about which it is known from the lite-
rature that it belongs to the dynamic skyline of P i.r.t. qs [12].
Therefore; i is inserted into RSSLx in the form <i, [qs, qe]>, i.e. with
an initial estimation that i is a dynamic skyline point of the dataset
i.r.t. Lx. The examination of the remainder of the data points du-
ring the algorithm’s execution might lead to an update of this initial
[qs, qe] interval estimation as shown by Line 17 of the algorithm.

When processing the second data entry <c, [qs, qe]> of H, in Line
6, Table 1 will suggest that a line sub-segment Lc ((8, 5), qe]  Lx
exists4, i.r.t. which i does not dynamically dominate c. Therefore, in
Line 7, the entry <c, ((8, 5), qe]> is inserted into H’.

The algorithm continues by examining the next entries of H. By
the time H empties, the algorithm has discovered all the dynamic
skyline points i.r.t. at least the query point qs. Then, according to
Line 19 of the algorithm, the entry <c, ((8, 5), qe]> is moved from H'
back into H and the loop in Lines 3-20 is executed again.

When all data points are processed, the final content of RSSLx is
{<i, [(6, 5), (10, 5)]>, <e, [(6, 5), (7, 5))>, <l, [(6, 5), (10, 5)]>, <c, ((8, 5),
(10, 5)]>}, which shows that while the query point ‘shifts’ along the
line segment Lx from left to right, then, i.r.t. the line sub-segment
L1x [(6, 5), (7, 5))  Lx, the dynamic skyline of P contains the data
points i, e and l; i.r.t. the sub-segment L2x [(7, 5), (8, 5)]  Lx, the
dynamic skyline contains the data points i and l; and i.r.t. the sub-
segment L3x ((8, 5), (10, 5)]  Lx the dynamic skyline contains the
points i, l and c. Therefore, with a single R-tree traversal, the algo-
rithm can report the whole range skyline of the dataset i.r.t. the line
segment Lx i.e. it can report the dynamic skyline of the dataset i.r.t.
every query point on Lx.

3.1.2 Two-dimensional Query Intervals
Figure 1(b) illustrates the case of the 2-d rectangle: firstly, it allows
a better grasp of how the algorithm works on the 2-d space, and the
subsequent extension of the concept to the n-d case; secondly, there
are many applications that may exclusively involve 2-d spaces ([6,
9, 14, 20], etc.), whence the attraction of this case.

Next, it is assumed that the user’s preference consists of an inter-
val of values on both the x- and the y- axes: the created query pred-
icate is a rectangle Ω iso-oriented towards the axes of the 2-d
space. Figure 1(b) illustrates a 2-d reference rectangle Ω (boundary
inclusive), i.r.t. every individual point of which our user requests
the dynamic skyline.

To compute the dynamic skyline of the dataset i.r.t. every single
query point q

 Ω, every data point p is projected onto another
point p' with coordinate values that are computed using Equation
(1). However, we can anticipate that, as the query point q rolls on
the surface of the rectangle Ω from South-West to North-East, the
coordinate values of the projected point p' of p might increase or
might not change at all. Therefore, the point p' either rolls on the
workspace in the same direction as q, i.e. from South-West to
North-East, or remains in the same position.

Properties 1, 2 and 3 hold for each (x and y) dimension separate-
ly, dividing the dataset into 3n different types of data points, where
n = 2. For example, if we consider the case of the point a (ax, ay) in
the region A of Figure 3(a), with ax ≤ qsx and ay ≤ qsy, Property 1
holds in both dimensions and the projected point i.r.t. every point
q  Ω belongs in a rectangle with bottom-left vertex a' (2qsx−ax,
2qsy−ay) and top-right vertex a'' (2qex−ax, 2qey−ay). In accordance
with Thales’s Intercept Theorem [15], the length of the side of this
rectangle in every dimension is twice the length of the correspond-
ing side of rectangle Ω. Figure 1(b) illustrates the projection of all
the data points of the running example.

4 The left-most boundary end-point (8, 5) is not included in the line sub-

segment Lc because, as Table 1 indicates, i  (8, 5) c holds.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

52

Theorem 2, as well as Lemmas 1 and 2, also hold in the case of a
query predicate that is a 2-d rectangle Ω, given the following ap-
propriate adjustments:

THEOREM 4 (EXTENSION OF THEOREM 2). Given a dataset P of points
in a 2-d space S, two points p (px, py), r (rx, ry)  P and a reference rec-
tangle Ω [qs, qe] iso-oriented towards the axes of S, where qs (qsx,
qsy) is the bottom-left-most and qe (qex, qey) is the top-right-most ver-
tex points of Ω, Table 1 specifies the range of coordinate values, per
axis of the space, of all points q  Ω i.r.t. which p q r holds.

PROOF. If we assume two data points p, r  P, the theorem deter-
mines that if (i) Table 1 indicates that, for the range of coordinate
values [qsx, qex] of Ω on the x-axis, the data point p can dynamically
dominate the data point r i.r.t. the sub-range of values [qpsx, qpex] 
[qsx, qex] and, if (ii) Table 1 indicates that, for the range of coordi-
nate values [qsy, qey] of Ω on the y-axis, the data point p can dy-
namically dominate the data point r i.r.t. the sub-range of values
[qpsy, qpey]  [qsy, qey], then we need to combine the independent
processes (i) and (ii) to discover that p dynamically dominates r i.r.t.
all the query points q in the sub-region of Ω created by these two
sub-segments, i.e. i.r.t. the sub-rectangle Ωp [(qpsx,qpsy), (qpex,qpey)]
≡ Ωp [qps, qpe]  Ω, where qps (qpsx, qpsy) and qpe (qpex, qpey) are
the bottom-left-most and top-right-most vertices of Ωp, if such a
sub-rectangle of Ω truly exists. 

LEMMA 7 (EXTENSION OF LEMMA 1). Given a point dataset P, two
points p, r  P and a rectangle Ω iso-oriented towards the axes of the
space, for which p  P

Ω r holds, then p dynamically dominates r i.r.t.
only one single sub-rectangle Ωp  Ω, which will also include at least
one vertex of Ω.

y
''

qe

x

y

qs

Ο

Ω

x'

 y

'

x''

e'

e a

a'

a''

A

Ωa
qa

e a

qs

Ω

e'

a'

 Ωa
qc

c

d

d'

 Ωb Ωc

y
''

x

y

x'

 y

'

x''

qd

Ωd

qb

Ο

qa

Qe
qe

 (a) (b)

Figure 3: (a) The sub-rectangle Ωa (in green) of the query win-
dow Ω (in red), i.r.t. which the point a dynamically dominates
the point e. (b) The combined picture of the dynamic domina-
tion of a point e by the points a, b, c, d, i.r.t. a rectangle Ω.

Figure 3(a) assumes a rectangle Ω iso-oriented towards the axes
of the space and two data points a and e. When the query point q
rolls on the surface of rectangle Ω, the projected versions a' and e'
of the data points a and e roll in the same direction on the surface of
the violet and blue rectangles. Therefore, a dynamically dominates e
when a' is located in the grey part of the violet rectangle, which
corresponds to the green sub-rectangle Ωa [qs, qa] of Ω.

LEMMA 8 (EXTENSION OF LEMMA 2). Given a dataset P of points,
a point p  P and a rectangle Ω iso-oriented towards the axes of the
space, if p is a range skyline point of P i.r.t. Ω then at most one single
line sub-segment may exist in every one of the four sides of Ω, i.r.t.
which p is a dynamic skyline point of P.

Similarly to the example of Figure 3(a), Figure 3(b) illustrates the
combined picture of the sub-regions (in green) of the query rectan-
gle Ω, i.r.t. which a data point e is assumed to be dynamically domi-
nated by four other data points a, b, c, and d. The point e is assumed
to not be dynamically dominated by any data point i.r.t. the re-
mainder of the sub-region Qe (in white) of Ω, and thus it is consid-
ered to be a dynamic skyline point of the illustrated dataset
P = {a, b, c, d, e} i.r.t. Qe.

The pseudo-code of the algorithm for processing the range sky-
line query i.r.t. a 2-d reference iso-oriented rectangle Ω is described
in Algorithm 2, which is an extension of Algorithm 1 for 2-d query
rectangles Ω. The algorithm uses two priority queues H and H’ with
pairs <e, Qe>, where e is an R-tree entry and Qe is the sub-region of
Ω, i.r.t. which e has not yet been found to be dynamically dominat-
ed by any other data point. The entries in H' are sorted in the as-
cending order of the MINDIST distance of Qe to qs. The entries in H
are sorted in the ascending order of the MINDIST of e to the query
point qes  Qe, located at the minimum distance from qs.

Algorithm 2: The Range Skyline RSSΩ(P)

Input: A dataset P indexed using an R-tree R

 and the query rectangle Ω [qs, qe].

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

RSSΩ = ∅; H = H’ = ∅;

Insert into H a pair of the form <e, Ω> for

 every entry e in the root of R;

REPEAT

 WHILE H  ∅ DO

 Remove top entry pair <e, Qe> of H;

 IF ∃ Qee  Qe: ∄ <p, Qp>  RSSΩ for which

 Qee  Qp and p  Qee e THEN

 IF (the point qees of Qee with the

 minimum distance to qs) ≠ (the point

 qes of Qe with the minimum distance to

 qs) THEN Insert <e, Qee> into H';

 ELSE

 IF e is an MBR THEN

 FOR every child ee of e DO

 IF ∃ Qeee  Qee: ∄<p,Qp> RSSΩ for

 which Qeee  Qp and p Qeee e THEN

 IF (the point qeees of Qeee with

 the minimum distance to qs) ≠

 (the point qees of Qee with the

 minimum distance to qs) THEN In-

 sert <ee, Qeee> into H';

 ELSE Insert <ee, Qeee> into H;

 ELSE

 FOR every pair <p, Qp> in RSSΩ for

 which Qee  Qp ≠  DO

 IF there is a sub-rectangle Ωpp 

  (Qp  Qee): e  Ωpp p THEN

 Update <p, Qp – Ωpp> into RSSΩ;

 Insert <e, Qee> into RSSΩ;

 Move into H the pairs <e, Qe>  H' having

 the regions Qe with the MINDIST to qs;

UNTIL H' = ∅;

Return RSSΩ;

Algorithm 2: Computation of the range skyline of a dataset
i.r.t. a 2-d query iso-oriented rectangle Ω.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

53

The first execution of the loop in Lines 3-20 examines whether
there are data points that are dynamic skyline points i.r.t. a sub-
region of Ω which includes the bottom-left-most end-point qs of Ω.
When the heap H empties for the first time, then the auxiliary heap
H' will contain all the R-tree entries which are dynamically domi-
nated by data points in RSSΩ i.r.t. qs but they might not be dynami-
cally dominated i.r.t. every point in Ω. In Line 19, the algorithm se-
lects and moves from H' to H all the pairs <e, Qe>  H', the region
Qe of which is located at the MINDIST minimum distance from qs. If
multiple regions Qe exist at the same MINDIST distance from qs but
with a different query point qes  Qe, which is located at the mini-
mum distance from qs, then only the batch of entries of H' sharing
the same qes are moved into H and the remaining entries of H' are
processed in a future execution of the loop in Lines 3-20.

When it is discovered in Line 20 that heaps H and H’ are empty,
the algorithm terminates and the RSSΩ set contains entries of the
form <p, Qp>, in which p is a dynamic skyline point of P i.r.t. the
sub-region Qp  Ω; thus, p is a range skyline point of P i.r.t. Ω.

The progressive behaviour and the correction of Algorithm 2 can
be verified by taking an approach similar to Algorithm 1. The ex-
tension of Lemmas 3-6 and Theorem 3 is straightforward in order
to also hold for query predicates that are 2-d rectangles.

Table 3 demonstrates the execution of Algorithm 2 in respect of
the example in Figure 1(b) for the computation of the range skyline
i.r.t. a query predicate that is a rectangle Ω [qs, qe] iso-oriented to-
wards the axes of the 2-d space, where qs (6, 5) is the bottom-left-
most vertex and qe (10, 8) is the top-right-most vertex point of Ω.
We again assume that the dataset is indexed using the R-tree of
Figure 2(b).

Up to the point of the processing of the entry <c, Ω [qs, qe]> of H,
the steps in Table 3 replicate the steps shown in Table 2. At this
point we check whether a sub-rectangle of Ω can be found, i.r.t.
which the data point i dynamically dominates the point c. Table 1
indicates that i dynamically dominates c i.r.t. the range of values [6,
8] on the x-axis and i.r.t. the range of values [5, 5.375] on the y- axis
which, according to Lemma 7, create the sub-rectangle Ω1ic [(6, 5),
(8, 5.375)]  Ω. Thus, c is not dynamically dominated i.r.t. the sub-
region Ω – Ω1ic. Therefore, in Line 12 of the algorithm, the entry
<c, Ω–Ω1ic>5 is inserted into heap H’ since, in this first execution of
the loop in Lines 3-20, the reference query point in Ω is its bottom-
left-most vertex point qs and we have qs  Ω – Ω1ic.

The algorithm then proceeds by examining the next entries of
heap H, until it empties. This first execution of the loop in Lines
3-20 finds the dynamic skyline points i.r.t. qs. At this stage, the en-
try <c, Ω – Ω1ic>  H', for which the sub-region Ω – Ω1ic has the
smallest MINDIST to qs of all the entries in H', moves from H' to H
and the loop in Lines 3-20 is executed again.

The final content of RSSΩ is {<i, Ω – [(8, 5.375), (10, 8)]>, <e,
Ω – [(7, 5), (10, 8)]>, <l, Ω – [(6, 6.125), (10, 8)]>, <c, Ω – [(6, 5), (8,
5.375)]>, <a, Ω – [(6, 5), (10, 7.125)]>, <b, Ω – [(6, 5), (10, 7)] –
[(6.125, 5), (10, 8)]>}. Thus, with a single R-tree traversal, we disco-
ver the dynamic skyline i.r.t. every single query point in Ω.

5 The sub-region “Ω – Ω1ic” of Ω can also be represented in the heaps H

and H' using the rectangles Q1c ((6, 5.375), (8, 8)], Q2c ((8, 5), (10, 5.375)]
and Q3c [(8, 5.375), (10, 8)], which construct it. From an implementation
viewpoint, some extra bits can be used per rectangle to determine
whether some of its edges or vertices belong to this sub-region.

Table 3: Steps of an example execution of Algorithm 2.
Step Action H content H' content RSSΩ content

1 Access
R-tree root

<Nc, Ω>, <Nb, Ω>  

...
7 Examine c <h, Ω>, <b, Ω>,

<a, Ω>, <g, Ω>,
<Ne, Ω>, <Ng, Ω>

<c, Ω – [(6, 5),
(8, 5.375)]>

<i, Ω>

...
19 Examine k  <c, Ω – [(6, 5), (8,

5.375)]>, <b, Ω – [(6, 5),
(10, 7)]>, <a, Ω – [(6, 5),
(10, 5.75)]>, <f, Ω – [(6,
5), (9.5, 8)]>

<i, Ω>, <e, Ω –
[(7, 5), (10, 8)]>,
<l, Ω – [(6, 6.125),
(10, 8)]>

20 Move c
from H' to
H

<c, Ω – [(6, 5), (8,
5.375)]>

<b, Ω – [(6, 5), (10, 7)]>,
<a, Ω – [(6, 5), (10,
5.75)]>, <f, Ω – [(6, 5),
(9.5, 8)]>

<i, Ω>, <e, Ω –
[(7, 5), (10, 8)]>,
<l, Ω – [(6, 6.125),
(10, 8)]>, <c, Ω – [(6,
5), (8, 5.375)]>

21 Examine c 
...

3.2 Multi-dimensional Space
The discussion and the algorithm for processing the range skyline
i.r.t. a rectangle iso-oriented towards the axes of the 2-d workspace
can be straightforwardly extended to the case of the n-d space for
n > 2. Indicatively, we simply reformulate Theorem 4:

THEOREM 5 (EXTENSION OF THEOREM 4). Given a dataset P of points
in an n-d space S, two points p, r  P and a reference hyper-rectangle
Ω [qs, qe] iso-oriented towards the axes of S, where qs (qs1, ..., qsn) is
the vertex with the lowest coordinate values of Ω on every axis, and
where qe (qe1, ..., qen) is the vertex with the highest coordinate values
of Ω on every axis, Table 1 specifies the range of coordinate values, per
axis, of all points q  Ω i.r.t. which p q r holds.

PROOF: It is a straightforward extension of the proof of Theorem
4 in n dimensions. 

4 PERFORMANCE EVALUATION
Experiments were conducted using two synthetic datasets com-
posed of 10M data points on a 4-d workspace of 10,000 units in eve-
ry dimension. Following [2], for the first dataset all the attribute
values were generated independently using a uniform distribution;
for the second dataset they were generated as anti-correlated values
(points good in one dimension are bad in other dimensions). The
datasets were indexed using the R*-tree [1] with a node size equal
to the page size of the file system. The workstation was equipped
with Intel I7 16GB RAM running the Windows 8.1 Pro 64-bit OS.

Every experiment was repeated ten times and, at every run, a dif-
ferent randomly-located query range was chosen. Due to length
restrictions only a selection of the findings of the performance in-
vestigation of the proposed algorithm are presented.

Experiment 1: Figure 4(a) demonstrates the impact of the page
size of the file system on the I/O cost (i.e. number of disk accesses)
for answering the range skyline query i.r.t. nine different values for

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

54

 (a) (b)

Figure 4: (a) Query window size vs. I/O cost for three page sizes.
(b) Dataset size vs. I/O cost, for two types of query predicates.

the size of the rectangular query window, using a 3-d dataset con-
taining 1M data points of independent attributes. 2K, 4K, and 8K
disk page sizes are studied. As expected, the number of pages ac-
cessed by the algorithm decreases when the page size increases, and
as the query window increases, so does the number of accessed disk
pages. This is explained by the fact that, when the query window
increases, both the area to be searched and the expected number of
range skyline points increase.

Experiment 2: Figure 4(b) presents the impact of the dataset size
on the I/O cost for executing the proposed algorithm using a 2-d
dataset with 10M data points of independent attributes and a 4K
page size. The query is executed at every 25% intervals of the data
inserted, every time i.r.t. two different types of query predicates:
(i) a rectangle Ω iso-oriented towards the axes of the space, cove-
ring 1% of the area of the space, and (ii) a line segment Lx parallel to
the x-axis with a length equal to the length of the side of the above
rectangle Ω on the x-axis. Although the window Ω covers a much
larger surface of the workspace than the line segment Lx covers, the
figure shows that the I/O cost for answering the query i.r.t. Ω is on-
ly about 2.5 times the corresponding cost i.r.t. Lx. This result is due
to the fact that the R-tree nodes that overlap the searched area i.r.t.
Lx also overlap the area searched i.r.t. Ω. Then in the case of Ω, the
algorithm accesses only a few more (adjacent on the space surface)
R-tree nodes than it would access in the case of Lx.

Experiment 3: Figure 5(a) illustrates the impact of the space di-
mensionality on the I/O cost to satisfy the range skyline query i.r.t.
query windows of nine different sizes, using a 3-d dataset with 1M
data points of anti-correlated attributes. Three different dimension-
alities are studied i.e. 2, 3, and 4. The figure points to the rapid
increase of the I/O cost with the increase of dimensionality, due to
the fact that an increase in the number of dimensions makes it less
possible for a data point to be dynamically dominated. Thus, the
number of range skyline points increases (more dimensions imply
more dynamic dominance checks and thus more range skyline
points). The I/O increase is also due to the gradual degradation of
the performance of R*-trees as the number of dimensions increases.

Same experiment: Figure 5(b) measures the impact of the number
of dimensions on the CPU time cost (in seconds). The I/O cost pre-
sented in Figure 5(a) and the CPU time cost presented in Figure 5(b)
indicate that if the query range is sufficiently small or the available
main memory sufficiently large (or if an acceptable combination of
these two parameters exists) for the entire priority queues to be
stored in main-memory, then most of the time cost for the execu-
tion of the algorithm is spent on accessing R-tree nodes to collect

 (a) (b)

Figure 5: (a) Dimensionality vs. I/O cost, and (b) Dimensionality
vs. CPU time cost, in both cases for several query window sizes.

eligible range skyline points. On the other hand, if the priority
queues are too long to fit in main-memory, a disk-based structure
(e.g. a B+-tree) needs to be adopted. However, it would be counter-
productive for a user to express a large range of preferences on eve-
ry axis, since this would produce a large number of range skyline
points, and would be unhelpful for decision-making.

5 RELATED WORK
Since the introduction of the skyline operator in 2001 [2], two cate-
gories of algorithms have stood out for the 'static' and for the dy-
namic skyline queries i.r.t. a query point: non-index algorithms that
scan the whole dataset to provide the results (e.g. [2, 4]) and index-
based algorithms (e.g. [12, 16]), which include the state-of-the-art
index-based Branch-and-Bound Skyline algorithm [16], and which
inspired the present work. Venturing beyond data management
domains and applications, this paper examines the range skyline
search as a preference-oriented type of query, to which none of the
existing point-based algorithms is applicable, given the infinite
number of query points in an n-d range.

Huang et al. [9] propose the continuous monitoring of the sky-
line, whereby both the query point and the data points continuous-
ly shift along a line at a constant speed in every dimension. Fu et al.
[7] model the approximate location of the moving query on the 2-d
road network as a range, instead of as a point, and compute the
skyline after defining the domination relation between two data po-
ints on the basis of both their distance to the query and the mono-
tonic order in any other available attribute. Their approach only co-
nsiders the ‘static’ skyline and only in the spatial networks domain.
Variants of continuous skyline queries in road networks (e.g. [20])
are not all applicable to the more generic scenario proposed here.

Since the confidentiality of a user’s preferences and location be-
came an important issue, range-based queries have been incorpo-
rated into skyline algorithms. Papadias et al. [16] introduced the
constrained skyline query whereby the results of the ‘static’ skyline
query include only the most interesting data points with coordinate
values within a range. Rahul and Janardan [17] proposed a method
for retrieving the local ‘static’ skyline of all the data points lying
within a small neighbourhood of interest, specified as a query re-
gion on the xy-plane. Lin et al. [14] coined the term range-based
skyline query in which the ‘static’ skyline for the non-spatial attrib-
utes of the data points is refined on the basis of the distance of
these points to a rectangular query predicate. A recent approach
considering the ‘static’ skyline is that of Lai et al. [13] who focused
on the distributed domain over mobile wireless sensor networks.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

55

Given a query range, with the algorithm proposed in [24], the
data points which are dynamically dominated by other data points
i.r.t. the whole range can be pruned. However i) it produces false
hits as the method is not able to prune all the data that do not be-
long to the dynamic skyline i.r.t. the given range; ii) the final result
can only be retrieved using a non-index skyline processing algo-
rithm (e.g. [4]); iii) this approach cannot fully take advantage of an
index-based skyline processing algorithm to reduce the computa-
tion cost; and iv) it also differs from our work in respect of the defi-
nition of the range skyline set, since, for [24], a data point can be in
the range skyline only if it is not dynamically dominated by any
other data point i.r.t. every query point in the given range (see our
Definition 3). Our approach considers a data point which can be in
the range skyline if it is not dynamically dominated by any other
data point i.r.t. any individual query point in the range i.e. not nec-
essarily i.r.t. all the query points in the range (see our Definition 5).
Our solution also defines the sub-region of the given n-d range, i.r.t.
which a data point can belong to the range skyline set.

Finally, some studies consider several reference query points
simultaneously co-existing on the workspace [6, 19] and some oth-
er studies consider caching mechanisms (e.g. [18]) to speed up
point-based dynamic skyline queries issued in close time instants
using query points quite close to each other. Our approach deals
with such problems with a single R-tree traversal, after drawing a
range that includes all the sources (i.e. query points) that the users
have submitted and by searching, in the results, for the data points
belonging in the dynamic skyline of every individual source.

6 CONCLUSIONS AND FUTURE RESEARCH
This paper extends the concept of the point-based dynamic skyline
query and proposes the range skyline query for applications which
allow users to submit preferences using an interval of values on
every dimension of the n-d space, rather than a precise value. This
approach computes the dynamic skyline query i.r.t. the infinite set
of query points in the given range. An algorithmic solution is pre-
sented and several geometric properties and heuristics are consi-
dered to avoid having to compute the dynamic skyline i.r.t. every
single point in the range. The proposed algorithm is progressive
and it provides I/O optimality, and no false hits and misses. Its effi-
ciency and robustness is tested under empirical conditions with en-
couraging results.

Looking into the future, a comprehensive theoretical analysis of
the lower and upper bounds of the I/O cost performance behaviour
of the proposed algorithm needs to be carried out on foundation
work on the point-based skyline query (for example the range sky-
line cardinality can be estimated by building upon the work of [3,
22] and others). Prior theoretical work in the area of the traditional
range query [21] cannot be easily extended and applied to the range
skyline query problem since the surface on the workspace that
needs to be searched is not known beforehand in this more complex
case of cost estimation.

Other lines of pursuit regard i) the use of the algorithm with very
large data sets and in high-dimensional spaces, where the priority
queues may have to be stored in a disk instead of in main-memory
and ii) the efficient support of the continuous on-line maintenance
of the range skyline set in dynamic environments where data
points can move or the query range may change continuously.

The range skyline query is expected to benefit numerous data
management applications and to apply in several other emerging
domains requiring preference-based computation such as the priva-
cy preservation domain, which is facing the increasingly urgent
challenge of preserving confidentiality, thus moving from the era of
user preferences stated with precise values to the era of preferences
stated in the more opaque terms of a blurred range of values.

REFERENCES
[1] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. 1990. The R*-tree:

an efficient and robust access method for points and rectangles. In SIGMOD

Proceedings, 322–331.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. 2001. The skyline operator. In

17
th
 ICDE Proceeding, 421–430.

[3] C. Buchta. 1989. On the average number of maxima in a set of vectors. In-

formation Processing Letters, 33(2):63-65.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. 2003. Skyline with presor-

ting. In 19
th
 ICDE Proceedings, 717–719.

[5] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. 2008. Parallel distribu-

ted processing of constrained skyline queries by filtering. In 24
th
 ICDE Pro-

ceedings, 546–555.

[6] K. Deng, X. Zhou, and H. T. Shen. 2007. Multi-source skyline query pro-

cessing in road networks. In 23
rd

 ICDE Proceedings, 796-805.

[7] X. Fu, X. Miao, J. Xu, and Y. Gao. 2017. Continuous range-based skyline

queries in road networks. World Wide Web, 20(6):1443–1467.

[8] A. Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In SIGMOD Proceedings, 47–57.

[9] Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung. 2006. Continuous skyline

queries for moving objects. IEEE TKDE, 18(12):1645–1658.

[10] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. 2008. Skyline query pro-

cessing for incomplete data. In 24
th
 ICDE Proceedings, 556-565.

[11] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos. 2008. Continuous k-

dominant skyline computation on multidimensional data streams. In 23
rd

 SAC

Proceedings, 956–960.

[12] D. Kossmann, F. Ramsak, and S. Rost. 2002. Shooting stars in the sky: An

online algorithm for skyline queries. In 28
th
 VLDB Proceedings, 275–286.

[13] C. C. Lai, Z. F. Akbar, and C. M. Liu. 2016. A cooperative method for pro-

cessing range-skyline queries in mobile wireless sensor networks. In 6
th
 EDB

Proceedings, 1–8.

[14] X. Lin, J. Xu, and H. Hu. 2013. Range-based skyline queries in mobile envi-

ronments. IEEE TKDE, 25(4):835–849.

[15] A. Ostermann, and G. Wanner. 2012. Geometry by its history. Springer Sci-

ence & Business Media.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. 2005. Progressive skyline compu-

tation in database systems. ACM TODS, 30(1):41–82.

[17] S. Rahul, and R.Janardan. 2012. Algorithms for range-skyline queries. In 20
th

SIGSPATIAL Proceedings, 526-529.

[18] D. Sacharidis, P. Bouros, and T. K. Sellis. 2008. Caching Dynamic skyline

queries. In 20
th
 SSDBM Proceedings, 455–472.

[19] M. Sharifzadeh, and C. Shahabi. 2006. The Spatial skyline queries. In 32
nd

VLDB Proceedings, 751–762.

[20] C. Shi, X. Qin, and L. Wang. 2015. Continuous skyline queries for moving

objects in road networks. Journal of Software, 10(2):190–200.

[21] Y. Theodoridis, and T. Sellis. 1996. A model for the prediction of R-tree

performance. In 15
th
 PODS Proceedings, 161–171.

[22] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos. 2013. On estimating

the maximum domination value and the skyline cardinality of multidimen-

sional data sets. International Journal of Knowledge-Based Organizations,

3(4):61–83.

[23] Y. Wang, X. Li, X. Li, and Y. Wang. 2013. A survey of queries over uncer-

tain data. Knowledge & Information Systems, 37(3):485–530.

[24] W. C. Wang, E. T. Wang, and A. L. Chen. 2011. Dynamic skylines conside-

ring range queries. In 16
th
 DASFAA Proceedings, 235–250.

Session 1B: Top-K CIKM’18, October 22-26, 2018, Torino, Italy

56

