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ABSTRACT 
Database-as-a-service is a relatively new cloud computing service 
offered on a pay-per-use basis and providing on-demand access to 
a database. The way data has dramatically increased in volume 
explains its success, while security and privacy issues arise, 
leaving enterprises, in particular, exposed to the risk of leakage of 
the data which they entrust to specialized cloud service providers 
or to other parties in order to reduce storage and query processing 
costs. Since traditional encryption does not support the execution 
of queries on encrypted data, this paper focuses on the problem of 
secure computation on encrypted data and puts forward a cloud 
database model that supports secure range query processing and 
retrieval of multi-dimensional (i.e. multi-attribute) data. It 
proposes two schemes to resist practical attacks operating on the 
basis of powerful background knowledge. A performance and 
efficiency evaluation of these schemes is also carried out to 
confirm their efficiency and practicability. 
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1 INTRODUCTION 
Cloud computing is a model which enables enterprises and 
individuals to benefit from ubiquitous, convenient and on-demand 
access to a shared pool of configurable computing resources that 
can be rapidly provisioned and released with minimal effort in 
terms of management or service provider interaction. Among the 
services on offer is the Database-as-a-Service (DaaS). It is 
understood that the DaaS is related to traditional database services 
with no need to manage or control the underlying infrastructure, 
nor even take on some of the core database administration 
responsibilities. While there are clear benefits, some aspects of 
cloud technology are also marked by a lack of efficiency, a major 
example of which is the issue of the protection of the privacy of 
the data. Before cloud technology gained in popularity, the risks 
involved would have made it unthinkable for any enterprise or 
individual to surrender all their sensitive data to a third-party 
entity. 

The most important threats to privacy in the cloud lie within 
two broad categories which are the “lack of control” over the data 
and the “absence of transparency”, since there tends to be 
insufficient information available regarding the cloud service 
processing operation itself. These risks may expose the data to a 
security breach, possibly the most prominent issue in the domain 
of data outsourcing [1], the impact of which may be devastating 
for the owner of the data [2]. 

A straightforward solution to reduce the risk of a breach of 
data is encryption. And yet, recent market surveys [3, 4] reveal 
that almost a third of all highly sensitive corporate data stored in 
the cloud is not encrypted. This low percentage is partly due to the 
increased communication and computational cost involved in 
executing the client’s queries. For this reason, a new class of 
encryption models has been proposed [5] offering protection for 
sensitive outsourced data in untrustworthy clouds while still 
supporting business workflows efficiently. Models and schemes 
have been proposed that either suggest a keyword search [6] or 
the execution of several kinds of well-known database queries 
such as the nearest-neighbor [7] or the top-k [8] queries.  

This work focuses on the secure and efficient execution of 
range queries over multi-dimensional (i.e. multi-attribute) datasets 
in the cloud. The range query is defined as finding all the data 
with keys within a certain range in one or more attributes. It can 
be used either as a standalone query (e.g. in similarity search 

Permission to make digital or hard copies of all or part of this work for personal 
or classroom use is granted without fee provided that copies are not made or dist-
ributed for profit or commercial advantage and that copies bear this notice and the 
full citation on the first page. Copyrights for components of this work owned by 
others than ACM must be honored. Abstracting with credit is permitted. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from Permissions@acm.org 
IDEAS '17, July 12 - 14 2017, Bristol, United Kingdom. 
© 2017 Association for Computing Machinery. 
ACM ISBN 978-1-4503-5220-8/17/07…$15.00 
http://dx.doi.org/10.1145/3105831.3105872 

http://dx.doi.org/10.1145/3105831.3105872


applications) or as a core module of common data analytic tasks 
such as machine learning and data mining (e.g. classification and 
clustering). The first work of research to propose cryptographic 
techniques for evaluating range predicates directly over encrypted 
data are [9] and [10]. For example, Shi et al. in [10] propose a 
searchable encryption scheme that supports multi-dimensional 
range queries by utilizing an interval tree structure to form a 
hierarchical representation of intervals along every dimension. 
Since then several solutions [11 – 20] have appeared, some of 
which offer very strong security guarantees but not efficient 
performance. Other solutions offer more of a balance between 
confidentiality and efficiency.  

This study focuses on encrypted data that are not supported by 
any specialized indexing method to compute the range query. A 
real-life application could be a cloud service providing storage 
and a processing environment in which an indexing mechanism 
may not be an option, or it may be offered at a disadvantageous 
cost. The paper suggests three schemes and identifies trade-offs 
between security and efficiency, which revolve around trading 
storage or processing overhead and potentially false positives for 
security. With the proposed schemes, a cloud server is able to 
correctly verify whether a data object is inside the boundary of a 
range in the encrypted data domain without breaching the privacy 
of the data or of the users’ queries (i.e. preferences).  

The paper will unfold with Section 2, which briefly surveys 
the advantages and limitations of some of the work that is closely 
related to range searching over encrypted data; Section 3, which 
discusses preliminaries and notations that are relevant to the 
proposed work; Section 4, which puts forward three schemes for 
range query processing in encrypted multi-dimensional databases; 
Section 5, which examines experimental results on the 
performance efficiency of both real and synthetic datasets; Section 
6, in which conclusions are drawn and suggestions for future 
research are made. 

2 RELATED WORK 
The range query being one of the most popular query 

operations in SQL and in multi-dimensional databases, models 
based on four distinct methodologies were developed to offer 
secure range query processing in cloud databases: the hidden 
vector encryption (HVE), bucketization, order-preserving 
encryption (OPE), and special indexing methods traversal.  

The HVE-based approaches [9, 11], which use asymmetric 
cryptography to encrypt the data by hiding its attributes in an 
encrypted vector, use bilinear groups equipped with bilinear maps 
and at a considerably expensive computational cost.  

In response to this limitation, bucketization offered a more 
desirable balance between security and practical efficiency by 
grouping the multi-dimensional objects with spatial proximity into 
the same encrypted bucket: the range query retrieves all the 
objects in the buckets that overlap the range [12, 13], and this is 
possibly achieved by introducing false positives. Bucketization 
provides weak privacy protection since it discloses the distribution 
of the data to an observer because two encrypted datasets, with the 

same number of data items but different distributions, will cause 
the buckets to have different distributions in sizes as these two 
datasets will balance the number of items among buckets 
differently. 

Similarly, OPE [14, 15] offers solutions that preserve the 
relative ordering of the data items even after encryption, which 
allow the direct translation of a range query from the original to 
the encoded domain, thus the trivial support of rectangular range 
search. By design, OPE inevitably leaks the ordering of the 
encoded data, allowing the cloud provider to statistically estimate 
the actual values of both the data items and the queries. 

Some specialized indexing methods can offer the range query 
evaluation over encrypted data. For example [16] proposes a 
searchable encryption scheme that supports range query 
processing by utilizing an interval tree structure to form a 
hierarchical representation of intervals for every dimension. The 
method stores multiple ciphertexts corresponding to a single data 
value in the server, i.e. every one corresponds to a range. 
Elsewhere, [17, 18] make use of lightweight cryptography and 
follow the notion of searchable symmetric encryption to support 
the range query by utilizing fast inverted indices. Both methods 
leak the search pattern (i.e. reveal which queries are the same). 
Furthermore, the approach proposed by [17] cannot support 
updates. In other recent research, the authors of [19] propose a 
secure hardware-based construction of the popular single-
dimensional B+-tree for the support of exact match and range 
queries. However, the extension of this secure access method for 
handling multi-dimensional data is yet to be explored.  

The index-based solution in [20], which introduces a 
hierarchical encrypted variation of the R-tree [21, 22], encrypts 
the query ranges along a methodology similar to this paper’s, 
while the data objects themselves can be encrypted in any other 
way. To avoid revealing the data proximity in every query, the 
method returns all the data stored in the data nodes overlapping a 
query range, thus by possibly introducing false positives. The 
main difference is that this paper proposes a solution that neither 
relies on a pre-computed index nor needs computational and 
storage power to pre-process and index the dataset, and that it 
avoids limitations such as the well-known curse of dimensionality 
in the case of the R-tree. 

Privacy-preserving range queries can be supported with 
optimal security via powerful theoretical cryptographic tools such 
as the Oblivious Random Access Memory (ORAM, [23]), which 
enables access to an encrypted memory space without disclosing 
which memory location is accessed, thus hiding both the data and 
the access patterns of the queries, or such as the fully 
homomorphic encryption [24]. Both these tools are prohibitively 
costly for database applications. 

This paper extends the secure computation model presented in 
[7] for nearest neighbor search, in order to also handle the range 
query, while shielding it with stronger security guaranties. The 
main difference between nearest neighbor and range search is that 
nearest neighbor search pre-defines the number of effective search 
results (i.e. to 1 or k) in the generation of each query without 
providing a particular range on the data space; while range search 
specifically defines an interval of values in every dimension of the 
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data space without considering the number of effective search 
results. Therefore, nearest neighbor search is different from range 
search, even in the plaintext domain and the model proposed in 
[7] is not applicable to range search. 

3 PRELIMINARIES AND NOTATIONS 

3.1 Design Goals 
The proposed model is based on the DaaS cloud services model in 
which two entities form the two parts of the system: the client, 
which is the legitimate owner of the data, and the cloud server. 
The protocol considers the participation of one client, although 
more clients may exist. The client outsources the data to the server 
in an encrypted form with the expectation that s/he will be able to 
carry out a remote search without breach of privacy. It is assumed 
that the client is capable of protecting the secret key for the data 
decryption process. The client’s device to access the data is 
assumed to have a minimum degree of computation power to be 
ableto execute the encryption and decryption processes or to 
perform simple calculations in order to refine the results of the 
queries. This paper does not consider issues of control of access 
and accountability or threats to data integrity and availability: 
other mechanisms can handle these. 

On the basis of the above requirements, the design of the 
proposed models on the cloud should achieve the following main 
security and performance goals. 
• Confidential data storage and retrieval: A goal of the model is 

to prevent the cloud provider or any outsider from obtaining 
access to the plaintext of the protected content or from 
obtaining any amount of useful information about it, besides 
what can be derived from the legitimate client’s encrypted 
search results. 

• Client authorization: The authorized client alone should be 
able to contribute data or obtain access to the plaintext of the 
relevant encrypted content.  

• Scalability and data upload/search efficiency: The system 
should aim at high scalability, i.e. low key management 
overhead; the client should not be obliged to store permanently 
any plaintext or ciphertext of the data content in her/his local 
device. The system should support efficient encrypted range 
search functionality. These goals should be achieved with a 
low communication and computation overhead. 

• Simplicity and extensibility: The protocol should be simple 
enough to be implementable on top of existing commercial 
cloud APIs.  

• Secure communication: Communication between the client and 
the server should be secure and it should happen without the 
need for the intervention of an intermediary entity such as a 
trustworthy authority.  

3.2  The Threats Model 
The predator is assumed to be honest-but-curious, with the 
intention of obtaining full access to the plaintext of the encrypted 
stored data without altering any data that is communicated 

between the client and the server. The predator might know all the 
procedures involved, such as the encryption and decryption 
algorithms. The predator should not be able to get access to any 
part of the plaintext database. Besides having access to the 
encrypted data, the predator might possess additional knowledge 
about the original data. The attacks can be classified according to 
the different amounts of knowledge that the predator might 
possess [7]. 
• Level 1 - Known ciphertext sample attack: the simplest class of 

attacks in which the predator may have access to a sample or 
even to the whole set of the encrypted data.  

• Level 2 - Known ciphertext and plaintext samples attack: Apart 
from the ciphertext, in this class of attacks the predator may be 
aware of the values of a sample of tuples of the plaintext, 
without having any knowledge the corresponding ciphertext of 
these tuples in the encrypted dataset.  

• Level 3 - Known link between a ciphertext and a plaintext 
sample attack (or known input-output attack): The predator 
may now be aware of which ciphertext tuples in the encrypted 
dataset correspond to which tuples of the known plaintext 
sample. The predator may accordingly be aware of the 
plaintext and ciphertext of a sample of the client’s queries. 

It is now clear that a higher-level attack is more powerful than a 
lower-level attack, so if an encryption model is secure against an 
attack of a higher-level, it follows that it will be secure against a 
lower-level attack as well.  

3.3 Notations 
The study considers every data tuple as a multi-dimensional point 
by modeling its attributes as dimensions and their values as their 
coordinates. Therefore, the data point is of the form p (p1, p2, ..., 
pd) where d is the number of data dimensions. The data points 
construct a dataset P which is encrypted and stored on the cloud. 
The range query is defined with a hyper-rectangle which is 
provided by its  d-dimensional  centre  point  q (q1, q2, …, qd)  and  

Table 1: Symbols and notations 

Symbol Definition 
d The number of data dimensions  
P A set of d-dimensional point objects 
P' The encrypted version of P  

p, r d-dimensional data points 
p (p1, p2, …, pd) A d-dimensional point p with coordinates 

p1, p2, …, and pd 
p' (p'1, p'2, …, p'd) The encrypted version of a point p (p1, p2, 

…, pd) 
Ep(p) The encrypted version of a point p using the 

encryption function Ep 
q (q1, q2, …, qd) The d-dimensional centre-point of the 

hyper-rectangular predicate of a range 
query  

l1, l2, …, ld The length in every dimension of the hyper-
rectangular predicate of a range query 



the length l1, l2, …, ld of the hyper-rectangle’s side in every dime-
nsion. Table 1 lists the most commonly used symbols in the paper. 

4 The Proposed Encryption Schemes 

4.1 The Basic ASPE Scheme 
Given a d-dimensional point p (p1, p2, …, pd) and a hyper 
rectangle H with a center point q (q1, q2, …, qd) and a length side 
in every dimension l1, l2, …, ld (an example in two dimensions is 
illustrated in Fig. 1), the point p lies within H if all the following d 
distance comparison operations truly hold:  
 

�

𝑑𝑑(𝑞𝑞1, 𝑝𝑝1) ≤ 𝑙𝑙1/2
𝑑𝑑(𝑞𝑞2, 𝑝𝑝2) ≤ 𝑙𝑙2/2

…
𝑑𝑑(𝑞𝑞𝑑𝑑 ,𝑝𝑝𝑑𝑑) ≤ 𝑙𝑙𝑑𝑑/2

� ⇔

⎝

⎜
⎛
�𝑞𝑞12 − 2𝑞𝑞1𝑝𝑝1 + 𝑝𝑝12 ≤ 𝑙𝑙1/2
�𝑞𝑞22 − 2𝑞𝑞2𝑝𝑝2 + 𝑝𝑝22 ≤ 𝑙𝑙2/2

…
�𝑞𝑞𝑑𝑑2 − 2𝑞𝑞𝑑𝑑𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑑𝑑2 ≤ 𝑙𝑙𝑑𝑑/2⎠

⎟
⎞
⇔ 

 

⇔

⎝

⎜
⎛
𝑞𝑞12 − 2𝑞𝑞1𝑝𝑝1 + 𝑝𝑝12 − 𝑙𝑙12/4 ≤ 0
𝑞𝑞22 − 2𝑞𝑞2𝑝𝑝2 + 𝑝𝑝22 − 𝑙𝑙22/4 ≤ 0

…
𝑞𝑞𝑑𝑑2 − 2𝑞𝑞𝑑𝑑𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑑𝑑2 − 𝑙𝑙𝑑𝑑2/4 ≤ 0⎠

⎟
⎞
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p1 p2 

a 1.5 9 
b 2 13 
c 9 5.5 
d 4 17 
e 6 12 
f 14 15 
g 17 11 
h 2 5.5 
i 4.5 2 
j 16 1.5  
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Figure 1: A 2-dimensional sample dataset and the range query 
defined by a rectangle with a center-point q (q1, q2) and length 
l1, l2 for each of its sides. 

The above inequalities are decomposed into a number of product 
computations, from which ∀ i ∈ {1, ..., d} the products pi

2 and qi
2 

are fixed and, thus, can be pre-computed and be given to the cloud 
upon the insertion of p and, accordingly, upon the creation of q, so 
that they will be available for the secure range query processing. 
The only products that need to be computed by the server during 
the query processing are the ones between the coordinates of 
every database point p and the corresponding coordinates on the 
same dimensions of the query point q. By representing p and q by 
column vectors, the products between the coordinates of p and q 
can be computed by a scalar product between p and q in the form 
pT 

* q, where pT is the transpose of p. Therefore, the proposed 
encryption scheme needs to preserve only this type of scalar 
products for the range query processing, and as [7] has proved the 
scheme will be then resistant to level-2 attacks. Therefore the 

scheme has to be built on top of the notion of asymmetric scalar-
product-preserving encryption as it has been defined in [7]. 
Definition 1 - Asymmetric scalar-product-preserving encry-
ption (ASPE) scheme: Let Ep / Eq be the function for encrypting 
data / query points, Kp / Kq be the corresponding secret key and 
Ep(p, Kp) / Eq(q, Kq) be the encrypted version of a data / query 
point p / q. The encryption scheme is an ASPE scheme if, and 
only if, it preserves only the scalar product between p and q, i.e., p 
T 

* q = Ep(p, Kp) * Eq(q, Kq). 
The query point q should be encrypted differently from the 

data points (i.e. by using a different encryption function Eq) to 
guarantee that the encrypted version of q should not be equal to 
the encrypted version of any point r in the database when q 
coincides with r. In such a case, the encryption process would 
preserve the scalar product between p and q, thus the scalar 
product between p and r which is not a desirable property because 
it can be proved (see Theorem 2 in [7]) that it reveals the distance 
between p and r.  

The scalar product pT 
* q between p and q can be written as pT 

* 
Id * q, in which Id is the d × d identity matrix. The Id matrix can be 
decomposed into M * M -1 for any invertible matrix M, i.e. pT

* q = 
pT 

* Id * q = pT 
* (M * M -1) * q = (pT 

* M) * (M -1
* q). If we set p' = 

Ep(p, Kp) = M T 
* p and q' = Eq(q, Kq) = M -1 

* q, where p' and q' are 
the encrypted versions of p and q respectively, then pT 

* q = pT 
* M 

* M -1 
* q = p'T 

* q', i.e. the scalar product between any database 
point p and the query point q is preserved. Additionally it is not 
possible for someone to determine the values of p and q using the 
values of p' and q' without knowing M. Also supposing that p' and 
r' are the encrypted versions of two data points p and r, then p'T* r' 
= pT

* M * M T 
* r, which is not equal to pT

* r in general. Therefore, 
the encryption scheme does not preserve the scalar product 
between two data points, or between a data point and itself, while 
it indeed preserves the scalar product between a data point and a 
query point. This analysis shows that the ASPE scheme can be 
implemented by using M and M -1 as the encryption keys for the 
data points and the queries, respectively. 

The products p1
2, p2

2, …, pd
2 of the coordinates of the data 

point p can be computed by the scalar product pT 
* p. Wong et al. 

[7] have proved that the preservation of this product will reveal to 
the predator that p lies on a hyper-sphere that is centered at the 
origin of the space with a radius �𝑝𝑝12 + 𝑝𝑝22 + … + 𝑝𝑝𝑑𝑑2 . 
Although the exact location of p will be unknown, the information 
revealed partially compromises security. In order to keep this 
information hidden, the idea in our ASPE scheme is to transform 
the d × 1 column vector p = [p1, p2, …, pd]T into the corresponding 
3d × 1 column vector 𝑝̂𝑝 = [𝑠𝑠𝑝𝑝1𝑝𝑝12, −2𝑠𝑠𝑝𝑝1𝑝𝑝1, 𝑠𝑠𝑝𝑝1,  𝑠𝑠𝑝𝑝2𝑝𝑝22,
−2𝑠𝑠𝑝𝑝2𝑝𝑝2,  𝑠𝑠𝑝𝑝2,  …, 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑2, −2𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,  𝑠𝑠𝑝𝑝𝑝𝑝  ]𝑇𝑇 , in which the pre-
computed products p1

2, p2
2, …, pd

2 are also included. The sp1, sp2, 
…, spd parameters are random positive numbers which are used to 
increase the number of unknown parameters in the possible 
system of linear equations that a predator might construct and, as 
will be shown later, their existence does not affect the correctness 
of the range query computation. The transformed data point 𝑝̂𝑝 is 
then encrypted using the proposed function Ep for encrypting the 
data. 
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For a similar reason, the d × 1 column vector query point q = 
[q1, q2, …, qd]T is transformed into the 3d × d matrix:  

 

𝑞𝑞� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑠𝑠𝑞𝑞1
𝑠𝑠𝑞𝑞1𝑞𝑞1

𝑠𝑠𝑞𝑞1(𝑞𝑞1
2 − 𝑙𝑙12/4)

⋯
0
0
0

0
⋮ ⋱ ⋮

0
0
0
0

⋯
𝑠𝑠𝑞𝑞𝑞𝑞
𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞𝑑𝑑

𝑠𝑠𝑞𝑞𝑞𝑞(𝑞𝑞𝑑𝑑
2 − 𝑙𝑙𝑑𝑑2/4)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (1) 

 
in which the pre-computed products q1

2, q2
2, …, qd

2 and l1
2, l2

2, 
…, ld

2 are spread and hidden in the 𝑞𝑞�  vector using the 
corresponding sq1, …, sqd random positive numbers. The 
transformed query point 𝑞𝑞� is then encrypted using the proposed 
function Eq for encrypting the queries.  

Fig. 2 summarizes the proposed Basic ASPE Scheme process. 

Theorem 1. Suppose p' is the encrypted version of the d-
dimensional point p (p1, p2, …, pd) and q' is the encrypted version 
of the d-dimensional query point q (q1, q2, …, qd) that is the 
center-point of a hyper-rectangle H with a length side in every 
dimension l1, l2, …, ld. The Basic ASPE Scheme correctly 
determines whether p is inside the hyper-rectangular area H by 
evaluating p' T * q' ≤ 0. 

 
Private Key: a 3d × 3d invertible matrix M. 

Data encryption function: Ep(p) = M T 
* 𝑝̂𝑝, where p (p1, p2, …, 

pd) is a d-dimensional data point, 𝑝̂𝑝  is a 3d-dimensional data 
vector of the form 𝑝̂𝑝 = [𝑠𝑠𝑝𝑝1𝑝𝑝12, −2𝑠𝑠𝑝𝑝1𝑝𝑝1, 𝑠𝑠𝑝𝑝1,  ..., 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑2,
−2𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 , 𝑠𝑠𝑝𝑝𝑝𝑝  ]𝑇𝑇  and sp1, sp2, …, spd are random positive 
numbers. 

Query encryption function: Eq(q) = M -1 
* 𝑞𝑞�, where q (q1, q2, …, 

qd) is a d-dimensional query point and 𝑞𝑞� is a 3d × d matrix that is 
defined as in Equation (1). 

Range enclosure operation: assuming p' = Ep(p) and q' = Eq(q), 
in order to determine whether p lies within a hyper-rectangle with 
centre-point q and length side in every dimension l1, l2, …, ld, the 
server needs to check whether p' T 

* q' ≤ 0. 

Data decryption function: assuming an encrypted point p', a 
preliminary step of the decryption process is to extract the random 
positive numbers sp1, sp2, …, spd using the function π * (M T) -1 

* p', 
where π is a d × 3d binary matrix in which ∀ i ∈ {1, d} and ∀ j ∈ 
{1, 3d} if j = 3i then πij is set to be equal to 1, otherwise πij is set 
to be equal to 0. The coordinates of the data point p are then 
decrypted using the decryption function E 

p
-1(p') = σ * (M T) -1 

* p' 
where σ is a d × 3d matrix in which ∀ i ∈ {1, d} and ∀ j ∈ {1, 
3d} if j = 3i – 1 then σij is set to be equal to −1

2𝑠𝑠𝑝𝑝𝑝𝑝
, otherwise σij is set 

to be equal to 0. 

Figure 2: The Basic ASPE Scheme. 

Proof: Starting with p' T
 * q' we get (M T 

* 𝑝̂𝑝) T
 * M -1

*𝑞𝑞� = 𝑝̂𝑝 T
 * M 

* 

M -1
* 𝑞𝑞� = 𝑝̂𝑝 T

 * 𝑞𝑞� = [sq1sp1p1
2 – 2sq1sp1q1p1 + sq1sp1(q1

2 – l1
2/4),  ...,  

sqdspdpd
2 – 2sqdspdqdpd + sqdspd(qd

2 – ld
2/4)] = [sq1sp1(d 

2(q1, p1) – 
l1

2/4), ..., sqdspd(d 
2(qd, pd) – ld

2/4)] 
 

Therefore, the evaluation p' T
 * q' ≤ 0 is equivalent to the 

evaluation:  
 

⎝

⎜
⎛
𝑠𝑠𝑞𝑞1𝑠𝑠𝑝𝑝1(𝑑𝑑2(𝑞𝑞1, 𝑝𝑝1) − 𝑙𝑙12/4) ≤ 0
𝑠𝑠𝑞𝑞2𝑠𝑠𝑝𝑝2(𝑑𝑑2(𝑞𝑞2, 𝑝𝑝2) − 𝑙𝑙22/4) ≤ 0

…
𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝𝑝𝑝(𝑑𝑑2(𝑞𝑞𝑑𝑑 , 𝑝𝑝𝑑𝑑)− 𝑙𝑙𝑑𝑑2/4) ≤ 0⎠

⎟
⎞
⇔ �

𝑑𝑑(𝑞𝑞1, 𝑝𝑝1) ≤ 𝑙𝑙1/2
𝑑𝑑(𝑞𝑞2,𝑝𝑝2) ≤ 𝑙𝑙2/2

…
𝑑𝑑(𝑞𝑞𝑑𝑑 ,𝑝𝑝𝑑𝑑) ≤ 𝑙𝑙𝑑𝑑/2

� � 

 
With regard to attacks, the following theorem holds. 
 
Theorem 2: The Basic ASPE Scheme is not secure against level-3 
attacks. 

Proof: Assuming that the predator knows both the plaintext p and 
the ciphertext p' of a data point (the case of the knowledge of a 
plaintext of a query point q and its corresponding encrypted 
version q' is similar), the predator can use the equality p' = M T 

* 𝑝̂𝑝 
in order to construct a set of 3d equations, in which s/he will have 
3d × 3d = 9𝑑𝑑2 unknown parameters in the encryption key M T and 
d unknown parameters in the vector 𝑝̂𝑝 (i.e. the random positive 
numbers sp1, sp2, …, spd).  

By knowing, in total, n pairs of plaintext data points and their 
corresponding ciphertexts, the predator can construct a set of n3d 
equations with 9𝑑𝑑2 + nd unknown parameters. It is thus clear that 
if n3d ≥ 9𝑑𝑑2 + nd  ⇒ n ≥ 9d/2, then the number of equations will 
be larger than the number of unknown parameters. Therefore the 
predator will be able to solve the system of linear equations to 
eventually find the secret key M and the plaintext of every 
ciphertext.   

4.2 The Enhanced Scheme 1 
To make the Basic ASPE Scheme secure against level-3 attacks, 
this section discusses a solution inspired from an analogous 
scheme introduced in [7] for the k-nearest neighbor query. The 
new solution suggests the random splitting of all the values in 
every 3d × 1 column vector 𝑝̂𝑝, in order to generate two random 
shares 𝑝𝑝𝑝𝑝�  and 𝑝𝑝𝑝𝑝� , such that ∀ i ∈ {1, ..., 3d} we will have 𝑝̂𝑝i =  
= 𝑝𝑝𝑝𝑝� i + 𝑝𝑝𝑝𝑝� i. Therefore the product 𝑝̂𝑝 T

 * 𝑞𝑞� will be equal to 𝑝𝑝𝑝𝑝�  T
 *  

* 𝑞𝑞� + 𝑝𝑝𝑝𝑝�  T
 * 𝑞𝑞�. The vector 𝑝𝑝𝑝𝑝�  will be then encrypted with the secret 

key Ma and the vector 𝑝𝑝𝑝𝑝�  with the secret key Mb. Additionally 
every query point q will be encrypted twice, using the matrices 
Ma -1 and Mb -1, respectively. The final range enclosure evaluation 
will be performed using the equation pa' T

 * qa' + pb' T
 * qb' =  

= (Ma T 
* 𝑝𝑝𝑝𝑝�) T

 * Ma -1 
* 𝑞𝑞� + (Mb T 

* 𝑝𝑝𝑝𝑝�) T
 * Mb -1 

* 𝑞𝑞� = 𝑝𝑝𝑝𝑝�  T
 * 𝑞𝑞� +  

+ 𝑝𝑝𝑝𝑝�  T
 * 𝑞𝑞� = 𝑝̂𝑝 T

 * 𝑞𝑞�. 
Instead of splitting the values in the column vector 𝑝̂𝑝  the 

method can alternatively split the values in the matrix 𝑞𝑞�, or the 
values in some of the rows of 𝑝̂𝑝 and the values in some other rows 
of 𝑞𝑞�  (however, the method cannot split the values in the same 



rows in both 𝑝̂𝑝  and 𝑞𝑞�  at the same time). Therefore, during the 
encryption phase, the client will need to store a configuration bit 
string S, which is a 3d-bits vector, with every entry in it indicating 
whether p-splitting or q-splitting is used for the corresponding 
row in 𝑝̂𝑝 and 𝑞𝑞� . Since there are 23d possible configurations, the 
Enhanced ASPE Scheme 1 is more secure against attacks as 
compared to the Basic ASPE Scheme.  

 
Private Key: two 3d’ × 3d’ invertible matrices Ma and Mb, a 
configuration 3d'-bits string S and 3d' − 3d pre-generated random 
numbers w3d+1, w3d+2, ..., w3d'. 

Data encryption function: Ep(p) = Ma T 
* 𝑝𝑝𝑝𝑝�  + Mb T 

* 𝑝𝑝𝑝𝑝� , where 
p (p1, p2, …, pd) is a d-dimensional data point and 𝑝̂𝑝 = 𝑝𝑝𝑝𝑝�  + 𝑝𝑝𝑝𝑝�  is 
a 3d'-dimensional vector in which the first 3d dimensions are the 
same as the corresponding vector 𝑝̂𝑝 in the Basic ASPE Scheme in 
Fig. 2 and for the remainder i = 3d + 1 to i = 3d' dimensions if Si = 
1 then 𝑝̂𝑝i = wi, otherwise 𝑝̂𝑝i is set to be equal to a random number. 
For the last dimension with which Si = 0, 𝑝̂𝑝i is given a value so 
that the scalar product over the artificial attributes 3d + 1 to 3d' is 
0 (see [7] for more details). Additionally, for i = 1 to i = 3d', if Si 
= 1, then the value of 𝑝̂𝑝i is randomly split into 𝑝𝑝𝑝𝑝� i and 𝑝𝑝𝑝𝑝� i. If Si = 
0 then 𝑝𝑝𝑝𝑝� i and 𝑝𝑝𝑝𝑝� i are both set to be equal to 𝑝̂𝑝i.  

Query encryption function: Eq(q) = Ma -1 
* 𝑞𝑞𝑞𝑞�  + Mb -1 

* 𝑞𝑞𝑞𝑞� , 
where q (q1, q2, …, qd) is a d-dimensional query point and 𝑞𝑞� is a 
3d' × d' matrix, in which the first 3d × d cells are defined as in 
Equation (1) and for the rest i = 3d + 1 to i = 3d' of the rows of the 
j = 1 to j = d left-most columns, if Si = 0 then 𝑞𝑞�ij = wi, otherwise 
𝑞𝑞�ij is set to be equal to a random number. For the last dimension 
with which Si = 1, 𝑞𝑞�ij is given a value so that the scalar product 
over the artificial values i = 3d + 1 to i = 3d' is 0 (see [7] for more 
details). All the other cells in the matrix are set to be equal to a 
random number. Additionally, ∀ j ∈ {1, d} for i = 1 to i = 3d', if 
Si = 0 then the value of 𝑞𝑞�ij is randomly split into 𝑞𝑞𝑞𝑞� ij and 𝑞𝑞𝑞𝑞� ij. If Si 
= 1 then 𝑞𝑞𝑞𝑞� ij and 𝑞𝑞𝑞𝑞� ij are both set to be equal to 𝑞𝑞�ij. 

Range enclosure operation: assuming p' = Ep(p) = pa' + pb' and 
q' = Eq(q) = qa' + qb', in order to determine whether p lies within 
a hyper-rectangle H with centre-point q and a length side in every 
dimension l1, l2, …, ld, the server needs to check whether  pa' T 

* 
qa' + pb' T 

* qb' ≤ 0. 

Data decryption function: assuming an encrypted point p' = pa' 
+ pb', a preliminary step of the decryption process is to extract the 
random positive numbers sp1, sp2, …, spd using the function  
π * (Ma T) -1 

* pa' + π * (Mb T) -1 
* pb', where π is a d × 3d' binary 

matrix in which ∀ i ∈ {1, d} and ∀ j ∈ {1, 3d} if j = 3i then πij is 
set to be equal to 1, otherwise πij is set to be equal to 0. The 
coordinates of the d-dimensional data point p are then decrypted 
using the decryption function E -1

p(p') = σ * (Ma T) -1 
* pa' + σ * (Mb 

T) -1 
* pb' where σ is a d × 3d' matrix in which ∀ i ∈ {1, d} and ∀ j 

∈ {1, 3d'} if j = 3i – 1 then σij is set to be equal to −1
2𝑠𝑠𝑝𝑝𝑝𝑝

, otherwise 

σij is set to be equal to 0. 

Figure 3: The Enhanced ASPE Scheme 1. 

To boost security further, the solution suggests the increase of 
the d number of dimensions by adding artificial attributes to both 
𝑝̂𝑝 and 𝑞𝑞�. This can be achieved by extending the 3d column vector 
𝑝̂𝑝 to a 3d' column vector, and the 3d × d matrix 𝑞𝑞� to a 3d' × d' 
matrix, by padding artificial values such that the scalar product 
over the added attribute values will be 0. 

Fig. 3 summarizes the procedures implementing the proposed 
Enhanced ASPE Scheme 1. 

Theorem 3: The Enhanced ASPE Scheme 1 is secure against 
level-3 attacks. 

Proof: Assuming that d' = d, i.e. that no artificial dimensions have 
been added (the addition of artificial attributes will only increase 
the security of the scheme) and assuming that the predator knows 
both the plaintext p and the parts pa' and pb' of the ciphertext p' of 
a data point (the case of the knowledge about a plaintext of a 
query point q and its corresponding encrypted version q' is 
similar), the predator can use the equalities pa' = Ma T 

* 𝑝𝑝𝑝𝑝�  and pb' 
= Mb T 

* 𝑝𝑝𝑝𝑝�  in order to construct a set of 2*3d equations, in which 
s/he will have 2(3d*3d) = 18 𝑑𝑑2  unknown parameters in the 
encryption keys Ma T and Mb T, 3d unknown parameters in the 
vector 𝑝𝑝𝑝𝑝�  (since s/he does not know how this vector has been 
created, i.e. s/he does not know the configuration bit string S) and 
3d unknown parameters in the vector 𝑝𝑝𝑝𝑝�  (for the same reason as 
in the case of 𝑝𝑝𝑝𝑝�). 

By knowing in total n pairs of plaintext data points and their 
corresponding ciphertexts, the predator can construct a set of n6d 
equations with 18𝑑𝑑2 + n6d unknown parameters. It is thus evident 
that independently of the value of n there would always be 18𝑑𝑑2 
more unknown parameters than there are equations. Therefore, the 
predator would not be able to solve the system of linear equations 
in order to find the secret keys Ma and Mb. Thus the scheme can 
guarantee protection against level-3 attacks.   

4.3 The Enhanced Scheme 2 
This section proposes a secure solution against level-3 attacks that 
does not need to split the data and query points nor to add 
artificial dimensions, both of which actions may burden the 
processing cost for executing the range query. As the proof in 
Theorem 2 has shown, the drawback of the Basic ASPE Scheme 
is that if the predator knows the coordinates of a data point p (p1, 
p2, …, pd), then the 3d-dimensional vector 𝑝̂𝑝 that is defined in Fig. 
2 has only d unknown parameters, i.e. the random positive 
numbers sp1, sp2, …, spd. Accordingly, if the predator knows the 
coordinates of the centre-point q (q1, q2, …, qd) and the length l1, 
l2, …, ld in every dimension of the hyper-rectangular predicate of 
a range query, then the 3d × d matrix 𝑞𝑞� that is defined in Equation 
(2) has only d unknown parameters, i.e. the random positive 
numbers sq1, sq2, …, sqd.  

To remediate to the above drawback, the Enhanced ASPE 
Scheme 2 suggests that the vector 𝑝̂𝑝 should be transformed into a 
3d × d matrix as follows: 
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𝑝̂𝑝 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑠𝑠𝑝𝑝1(𝑝𝑝1

2 − 𝑚𝑚11)
−𝑠𝑠𝑝𝑝1(2𝑝𝑝1 + 𝑚𝑚21)

𝑠𝑠𝑝𝑝1𝑚𝑚31

⋯
−𝑠𝑠𝑝𝑝𝑝𝑝𝑚𝑚1𝑑𝑑
−𝑠𝑠𝑝𝑝𝑝𝑝𝑚𝑚2𝑑𝑑
−𝑠𝑠𝑝𝑝𝑝𝑝𝑚𝑚3𝑑𝑑

⋮ ⋱ ⋮
−𝑠𝑠𝑝𝑝1𝑚𝑚[3𝑑𝑑−2]1
−𝑠𝑠𝑝𝑝1𝑚𝑚[3𝑑𝑑−1]1
−𝑠𝑠𝑝𝑝1𝑚𝑚[3𝑑𝑑]1

⋯
𝑠𝑠𝑝𝑝𝑝𝑝(𝑝𝑝𝑑𝑑

2 −𝑚𝑚[3𝑑𝑑−2]𝑑𝑑)
−𝑠𝑠𝑝𝑝𝑝𝑝(2𝑝𝑝𝑑𝑑 + 𝑚𝑚[3𝑑𝑑−1]𝑑𝑑)

𝑠𝑠𝑝𝑝𝑝𝑝𝑚𝑚[3𝑑𝑑]𝑑𝑑 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (2) 

 
in which the parameters sp1, sp2, …, spd are random positive 
numbers and ∀ i ∈ {1, 3d} and ∀ j ∈ {1, d} and the parameter mij 
is a random positive number, with the exception of two cases: (a) 
if i = 3j then mij = 1 and (b) if i = 3j – 1 then mij is a pseudo-
random positive number, which is calculated as a function of the 
encryption key M and spi, for example mij = θ * min(Hash(Mij), 
Hash(spi)) / max(Hash(Mij), Hash(spi)), where θ is a user-
predefined positive number and Hash is a cryptographically 
secure hash function. 

Also the 3d × d matrix 𝑞𝑞� should be defined as follows: 
 

𝑞𝑞� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑠𝑠𝑞𝑞1𝑒𝑒11
𝑠𝑠𝑞𝑞1(𝑞𝑞1 + 𝑒𝑒21)

𝑠𝑠𝑞𝑞1(𝑞𝑞1
2 − 𝑙𝑙1

2/4− 𝑒𝑒31)
⋯

𝑠𝑠𝑞𝑞𝑞𝑞𝑒𝑒1𝑑𝑑
𝑠𝑠𝑞𝑞𝑞𝑞𝑒𝑒2𝑑𝑑
𝑠𝑠𝑞𝑞𝑞𝑞𝑒𝑒3𝑑𝑑

⋮ ⋱ ⋮
𝑠𝑠𝑞𝑞1𝑒𝑒[3𝑑𝑑−2]1
𝑠𝑠𝑞𝑞1𝑒𝑒[3𝑑𝑑−1]1
𝑠𝑠𝑞𝑞1𝑒𝑒[3𝑑𝑑]1

⋯

𝑠𝑠𝑞𝑞𝑞𝑞𝑒𝑒[3𝑑𝑑−2]𝑑𝑑

𝑠𝑠𝑞𝑞𝑞𝑞(𝑞𝑞𝑑𝑑 + 𝑒𝑒[3𝑑𝑑−1]𝑑𝑑)
𝑠𝑠𝑞𝑞𝑞𝑞(𝑞𝑞𝑑𝑑

2 − 𝑙𝑙𝑑𝑑
2/4− 𝑒𝑒[3𝑑𝑑]𝑑𝑑)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (3) 

 
in which the parameters sq1, sq2, …, sqd are random positive 
numbers and ∀ i ∈ {1, 3d} and ∀ j ∈ {1, d}, and the parameter eij 
is a random positive number as well, with the exception of the 
case when i = 3j – 2 in which eij = 1.  

Therefore, the range enclosure operation is p' T 
* q' ≤ 0 ⇔ 𝑝̂𝑝 T 

* 

𝑞𝑞� ≤ 0, where:  
 

p' T 
* q' ≤ 0 ⇔ 𝑝̂𝑝 T 

* 𝑞𝑞� ≤ 0 ⇔ �
𝑎𝑎11 ≤  0 ⋯ 𝑎𝑎1𝑑𝑑 ≤  0

⋮ ⋱ ⋮
𝑎𝑎𝑑𝑑1 ≤  0 ⋯ 𝑎𝑎𝑑𝑑𝑑𝑑 ≤  0

� 

 
in which ∀ i ∈ {1, d} the cell aii represents the equation:  
 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝𝑝𝑝 �𝑞𝑞𝑖𝑖2 − 2𝑞𝑞𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖2 −
𝑙𝑙𝑖𝑖2

4 � −  

 

−𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝𝑝𝑝 �𝑚𝑚[3𝑖𝑖−1]𝑖𝑖𝑞𝑞𝑖𝑖 + 2𝑒𝑒[3𝑖𝑖−1]𝑖𝑖𝑝𝑝𝑖𝑖 + �𝑚𝑚𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗

3𝑑𝑑

𝑗𝑗=1

� =  

 

= 𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝𝑝𝑝(𝑑𝑑2(𝑞𝑞𝑖𝑖 , 𝑝𝑝𝑖𝑖) −
𝑙𝑙𝑖𝑖2

4 − 𝑎𝑎𝑖𝑖) 

in which: 

𝑎𝑎𝑖𝑖 = 𝑚𝑚[3𝑖𝑖−1]𝑖𝑖𝑞𝑞𝑖𝑖 + 2𝑒𝑒[3𝑖𝑖−1]𝑖𝑖𝑝𝑝𝑖𝑖 + �𝑚𝑚𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗

3𝑑𝑑

𝑗𝑗=1

 

 

and, without loss of generality, by assuming that all the coordinate 
values p1, p2, …, pd and q1, q2, …, qd are non-negative numbers, 
then evidently ∀ i ∈ {1, d} we have ai ≥ 0. By evaluating the 
inequality aii  ≤ 0 we then have: 
 

𝑠𝑠𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝𝑝𝑝(𝑑𝑑2(𝑞𝑞𝑖𝑖 , 𝑝𝑝𝑖𝑖) −
𝑙𝑙𝑖𝑖2

4 − 𝑎𝑎𝑖𝑖) ≤ 0 ⇔ 

 

⇔ 𝑑𝑑2(𝑞𝑞𝑖𝑖 , 𝑝𝑝𝑖𝑖) ≤
𝑙𝑙𝑖𝑖2

4 + 𝑎𝑎𝑖𝑖 (4) 

 

Equation (4) is equivalent to the equation 𝑑𝑑2(𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖) ≤
𝑙𝑙𝑖𝑖′ 2

4
, where 

𝑙𝑙𝑖𝑖′ 2 = 𝑙𝑙𝑖𝑖2 + 4𝑎𝑎i is the length of the side in the i-th dimension of a 
hyper-rectangle H' which encloses the range query hyper-
rectangle H. Therefore, the Enhanced Scheme 2 in the range 
enclosure operation evaluates every encrypted data point against a 
hyper-rectangle that encloses the one which has been defined by 
the client. Thus, the execution of the client’s query may introduce 
false positives, which can subsequently be discarded by the client 
after s/he receives the results from the server.  However, the me- 
 
Private Key: a 3d × 3d invertible matrix M. 

Data encryption function: Ep(p) = M T 
* 𝑝̂𝑝, where p (p1, p2, …, 

pd) is a d-dimensional data point, 𝑝̂𝑝  is a 3d × d matrix that is 
defined as in Equation (2). 

Query encryption function: Eq(q) = M -1 
* 𝑞𝑞�, where q (q1, q2, …, 

qd) is a d-dimensional query point and 𝑞𝑞� is a 3d × d matrix that is 
defined as in Equation (3). 

Range enclosure operation: assuming p' = Ep(p) and q' = Eq(q), 
in order to determine whether p lies within a hyper-rectangle with 
centre-point q and length side in every dimension l1, l2, …, ld, the 
server needs to check whether p' T 

* q' ≤ 0. The result might 
contain some false positives that will be discarded by the client 
after receiving and decrypting the results. 

Data decryption function: assuming an encrypted point p', a 
preliminary step of the decryption process is to extract the random 
positive numbers sp1, sp2, …, spd using the function π * (M T) -1 

* p' 
where π is a d × 3d binary matrix in which ∀ i ∈ {1, d} and ∀ j ∈ 
{1, 3d} if j = 3i then πij is set to be equal to 1, otherwise πij is set 
to be equal to 0. The coordinates of the data point p are then 
decrypted using the decryption function E-1

p(p') = σ * (M T) -1 
* p' 

where σ is a d × 3d matrix in which ∀ i ∈ {1, d} and ∀ j ∈ {1, 
3d} if j = 3i – 1 then σij is set to be equal to −1

2𝑠𝑠𝑝𝑝𝑝𝑝
, otherwise σij is set 

to be equal to 0. It should be kept in mind that if  
i = 3j – 1 then mij is a pseudo-random positive number which is 
calculated as a function of the encryption key M and spi, for 
example mij = θ * min(Hash(Mij), Hash(spi)) / max(Hash(Mij), 
Hash(spi)), where θ is a user-predefined positive number and Hash 
is a cryptographically secure hash function. 

Figure 4: The Enhanced ASPE Scheme 2. 



thod does not provide false negatives, i.e. all the data points in the 
requested hyper-rectangle by the client are included in the results 
set. Fig. 4 summarizes the procedures that build the proposed 
Enhanced ASPE Scheme 2. 

Theorem 4: The Enhanced ASPE Scheme 2 is secure against 
level-3 attacks. 

Proof: Assuming that the predator knows both the plaintext p and 
the ciphertext p' of a data point (the case of knowledge about a 
plaintext of a query point q and its corresponding encrypted 
version q' is similar), the predator can use the equality p' = M T 

* 𝑝̂𝑝 
in order to construct a set of 3d equations, in which s/he will have 
3d*3d = 9𝑑𝑑2 unknown parameters in the encryption key M T and 
3𝑑𝑑2  unknown parameters in the matrix 𝑝̂𝑝 (i.e. ∀ i ∈ {1, d} the 
parameters spi and ∀ i ∈ {1, 3d} and ∀ j ∈ {1, d} with i ≠ 3j the 
parameters mij). 

By having knowledge of, in total, n pairs of plaintext data 
points and their corresponding ciphertexts, the predator can 
construct a set of n3d equations with 9𝑑𝑑2  + n3𝑑𝑑2  unknown 
parameters. It is thus clear that, independently of the value of n, 
there would always be 9 𝑑𝑑2  + n3d(d – 1) more unknown 
parameters than there are equations. Therefore the predator would 
not be able to solve the system of linear equations in order to find 
the secret key M. Thus the scheme can guarantee protection 
against level-3 attacks.   

5 EXPERIMENTAL EVALUATION 
Τhis section presents an experimental performance evaluation of a 
prototype implementation of the three proposed ASPE schemes in 
Java. The workstation that was used for simulating the client-side 
was equipped with Intel Core i5 CPU running at 2.70GHz with 
8GB RAM and Microsoft Windows 7 Professional 64-bit OS. 
With regard to the cloud service, its implementation is based on 
the Okeanos Infrastructure as a Service [25] using a Dual Core 
virtual machine with 6 GB RAM running Microsoft Windows 
Server 2012 and Microsoft SQL Server 2012. The experiments 
were conducted using two datasets, the 'Statlog (Shuttle)' dataset 
from the UCI repository [26], which is a real-life dataset dealing 
with the positioning of radiators in the space shuttle counting 
58,000 9-dimensional points, as well as a synthetic dataset 
containing an equal number of 58,000 uniformly distributed 100-
dimensional points.  

Every experiment was repeated 10 times and the average value 
of the measured parameters was calculated. When measuring the 
time cost performance for processing the range query on the 
server-side, a different randomly located range was chosen in the 
repetition of the experiment. In the case of the Enchanced Scheme 
1 the number of artificial dimensions d' – d was set to be equal to 
twice the d number of dimensions of the actual data points, 
therefore d' = 3d. If the findings of the performance investigation 
of the proposed ASPE schemes are comparable, irrespectively of 
whether the real or the synthetic data are used, then only half of 
them (i.e. either with the real or with the synthetic data) are 
depicted.  

(a) 

 
(b) 

Figure 5: Data encryption: The impact of the number of 
dimensions on the data encryption time using (a) real data 
and (b) synthetic data. 

The graphs of the first experiment in Fig. 5(a) / Fig. 5(b) study the 
impact of the d number of data dimensions on the Statlog / 
synthetic dataset encryption time for all the proposed ASPE 
schemes. The graphs show an expected growth of the time cost as 
the number of data dimensions increases. The two figures also 
indicate that the performance of the Enchanced Scheme 1 can be 
better than the corresponding performance of the Enchanced 
Scheme 2 only above dimensions d = 50, while in lower 
dimensions of  roughly d = 3 to 7 its performance rates about 20% 
to 30% worse than the performance of the Enchanced Scheme 2. 
Fig. 5(b) also shows that the performace of the enchanced 
schemes indicates a sharper increase on the encryption time in a 
rather high number of dimensions.  
The next two graphs in Fig. 6 illustrate the execution time of the 
range query on the server-side for the synthetic dataset. The 
results in Fig. 6(a) show an expected growth of the time cost in 
relation to the growth of the number of data dimensions (in this 
experiment the query hyper-rectangle covers an area equal to 5% 
of the workspace). The results in Fig. 6(b) show that the 
processing time cost is not affected by the query window size 
(defined as a percentage of the area of the rectangular workspace) 
since, in every query evaluation the proposed schemes access all 
the points in the dataset. In this experiment d is considered to be 
equal to 50. 
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(a) 

 
(b) 

Figure 6: Range query: (a) The impact of the number of 
dimensions, and (b) the impact of the query window size,  
in both cases, on the query execution time, using the synthetic 
data. 

The graphs of the third experiment in Fig. 7(a) / Fig. 7(b) illustrate 
the impact of the d number of dimensions on the Statlog / 
synthetic dataset decryption time for all the proposed schemes. 
The graphs indicate that the decryption time cost is clearly higher 
that the corresponding encryption time cost for all the schemes, 
which is because the decryption function performs slightly more 
operations per data tuple. As expected, the performance behavior 
of the three ASPE schemes that is shown in Fig. 7 is analogous to 
the corresponding behavior in Fig. 5 for the encryption time cost. 

Finally the graph relating to the last experiment in Fig. 8 
studies the false positives rate for the Enhanced ASPE Scheme 2 
as a function of the values of the random positive numbers mij and 
eij, ∀ i ∈ {1, 3d} and ∀ j ∈ {1, d} in the definition of the 𝑝̂𝑝 and 𝑞𝑞� 
parameters in Equations (2) and (3). It should be remembered that 
the Enhanced ASPE Scheme 2 is the only scheme introducing 
false positives in the query response. The underlying dataset is the 
synthetic dataset and the query window covers an area that is 
equal to 1% of the workspace. The x-axis in the graph shows four 
different domain values from which the random parameters draw 
their values, as a ratio to the corresponding coordinate value of the 
data or the query point, respectively, on the same dimension, i.e. 
for uniformly distributed random values that are equal to or 
smaller than 0.1%, 1%, 5% and 10% of the coordinate values of 
the data or of the query point on the same dimension. The figure  

(a) 

 
(b) 

Figure 7: Data decryption: The impact of the number of 
dimensions on the data decryption time using (a) real data 
and (b) synthetic data. 

shows that, as the values of the random parameters increase, the 
number of false positives increases as well.  
False positives increase privacy, therefore a rather large number 
of false positives is not necessarily a drawback for a secure query 
processing scheme. The conclusions drawn from this experiment 
are that the owner of the data can tune the Enhanced Scheme 2 for 
different tradeoffs between security and false positives.  
 

 

Figure 8: Range query: The impact of the values of the 
random parameters in Equations (2) and (3) on the false 
positives rate for the Enhanced ASPE Scheme 2, using the 
synthetic dataset. 



6 CONCLUSIONS AND FUTURE RESEARCH 
To address the security concerns relating to the use by enterprises 
and individuals of relational data management services on the 
cloud, the paper studies the problem of multi-dimensional (i.e. 
multi-attribute) range searching over encrypted data on an 
untrustworthy server, without the need for the mobilization of 
specialized pre-computed indexing methods or for the 
intervention of any intermediary trustworthy authority between 
the client and the server. Prior techniques in the field are either 
secure but entail prohibitive performance costs, or efficient but 
involve privacy leakages. The paper introduces two schemes with 
realistic security and efficiency tradeoffs. More specifically, the 
security analysis formally determines that the proposed schemes 
achieve data confidentiality and preserve data and query privacy 
under the known input-output attack. A prototype implementation 
and experimental evaluation of the proposed schemes indicate that 
they provide in practice efficient query processing costs for multi-
dimensional cloud database applications. 

As regards future plans of research, the proposed schemes will 
be examined for further optimizations, towards improving the 
speed of their efficiency without undermining their security. The 
construction of models for supporting other well-known queries 
for multi-dimensional data will also be examined.  
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