
Secure Reverse k-Nearest Neighbours Search
over Encrypted Multi-dimensional Databases

Theodoros Tzouramanis
University of the Aegean

83200 Samos, Greece
ttzouram@aegean.gr

Yannis Manolopoulos
Open University of Cyprus

2220 Latsia, Cyprus
yannis.manolopoulos@ouc.ac.cy

ABSTRACT
The reverse k-nearest neighbours search is a fundamental
primitive in multi-dimensional (i.e. multi-attribute) databases with
applications in location-based services, online recommendations,
statistical classification, pat-tern recognition, graph algorithms,
computer games development, and so on. Despite the relevance
and popularity of the query, no solution has yet been put forward
that supports it in encrypted databases while protecting at the
same time the privacy of both the data and the queries. With the
outsourcing of massive datasets in the cloud, it has become urgent
to find ways of ensuring the fast and secure processing of this
query in untrustworthy cloud computing. This paper presents
searchable encryption schemes which can efficiently and securely
enable the processing of the reverse k-nearest neighbours query
over encrypted multi-dimensional data, including index-based
search schemes which can carry out fast query response that
preserves data confidentiality and query privacy. The proposed
schemes resist practical attacks operating on the basis of powerful
background knowledge and their efficiency is confirmed by a
theoretical analysis and extensive simulation experiments.

CCS CONCEPTS
• Information systems~Data encryption • Security and
privacy~Privacy-preserving protocols • Security and
privacy~Management and querying of encrypted
data • Theory of computation~Database query processing
and optimization (theory) • Theory of
computation~Cryptographic protocols

KEYWORDS
Data outsourcing, cloud database services, secure cloud
computing, confidential multi-dimensional data retrieval,
encryption.

ACM Reference format:
T. Tzouramanis and Y. Manolopoulos. 2018. S Secure Reverse k-Nearest
Neighbours Search over Encrypted Multi-dimensional Databases. In
Proceedings of the 22th ACM International Database Engineering and
Applications Symposium, Villa San Giovanni, Italy, June 2018 (IDEAS
2018), 11 pages. https://doi.org/10.1145/3216122.3216170

1 INTRODUCTION
In recent years, cloud computing has become an increasingly
prevalent platform for the deployment, management, and
provisioning of large-scale services through an Internet-based
infrastructure. At the same time, much of the focus has been on
ways of coping with the security and privacy problems which are
particular to cloud computing [1]. An interesting application of
this platform is the Database as a Service (DaaS) [2], by means of
which individuals and organizations can outsource both their
database and its management functionality to the cloud service
provider to reduce the database management cost. When these
data are stored and queried on the cloud, encryption represents a
straightforward solution to ensure that the cloud owner or any
third party gaining access to the outsourced database do not have
access to information related to the sensitive data or to the queries
of their clients.

When the data owner attempts to take advantage of the
computation capabilities of the cloud service to analyse or query
the data stored in the cloud for the purpose of extracting
information and patterns, encryption will impede querying and
analysing functionalities and performance since the classical
encryption methods do not allow even simple operations over the
ciphertext. To address this issue searchable encryption was
proposed to protect the privacy of the users’ data on the cloud
without a loss of searching functionalities on the server-side.
More specifically, a data owner can encrypt data with searchable
encryption prior to outsourcing these data to the server, thus the
server can carry out a confidential search of the encrypted data
without the need to decrypt them. The first searchable encryption
scheme was designed back in 2000 [3] and various techniques
related to query processing over encrypted data were subsequently
proposed to improve efficiency and to enrich the searching
functionalities of the DaaS cloud model, including the range
[4, 5], k-nearest-neighbours [6, 7, 8], top-k [9] and aggregate [10]
queries.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6527-7/18/06…$15.00
https://doi.org/10.1145/3216122.3216170

https://doi.org/10.1145/3216122.3216170

c

d
e

b a
q

Figure 1: A RkNN query example with k = 1.

This work addresses the problem of the secure and efficient
processing of the reverse k-nearest neighbours (RkNN) query over
multi-dimensional (i.e. multi-attribute) datasets on the cloud.
Given a query point on the multi-dimensional space, the RkNN
query finds all the data points of a dataset which have the query
point as one of their k nearest neighbours. This database analysis
operation can be used either as a standalone query (e.g. in
similarity search applications) or as a core module of common
data analysis tasks such as machine learning and data mining (e.g.
classification and clustering). Figure 1 illustrates a simple
example in two dimensions: let’s imagine that it represent a real-
life application involving a small dataset of five research articles
a, b, c, d and e, which an enterprise wishes to store and process on
the cloud. A new article q arrives, which the service wishes to
promote and advertise. The service will identify the appropriate
research community on the basis of the distance between the area
of interest of their research and the feature vector representing this
new article q. The circles around the articles indicate an area
corresponding to the work most closely related them. The answer
of the RkNN query for k = 1 with regard to this new article q will
return the articles (and the email addresses of their authors) that
contain q in their circles, i.e. R1NN (q) = {b, c}.

The RkNN problem is complementary to that of finding the k
nearest neighbours of a query point. For example, if we posit that
p ∈ kNN (q) holds, this does not necessarily imply that p ∈ RkNN
(q) truly holds as well, and via-versa. Figure 1 illustrates such an
example, in which, while b is a reverse nearest neighbour of q, b
is not at the same time the nearest neighbour of q.

To the author’s knowledge, to-date, solutions have not yet
been put forward to evaluate securely RkNN query predicates on
sensitive data on the cloud.

The solutions proposed in this paper for RkNN query proces-
sing offer strong security guarantees and efficient performance.
The paper considers both the case of encrypted data that can be
supported, and the case of encrypted data that cannot be supported
by specialized indexing methods to execute the RkNN query. In a
real-life application, a cloud service might provide a storage and
processing environment in which the data indexing mechanism
may be offered as an additional and chargeable option, allowing
the user to disable it to reduce financial costs. This paper suggests
four schemes and identifies trade-offs between security and effi-
ciency. The schemes proposed allow a cloud server to correctly
verify whether a data object belongs to the RkNN set of a query
point in the encrypted data domain, without the privacy of the data
or of the user’s query and preferences being compromised.

Section 2 discusses the necessary preliminaries and notations;
Section 3 briefly surveys some of the work done in fields closely
related to the RkNN search over encrypted data; Section 4
presents four schemes for RkNN query processing in encrypted
multi-dimensional databases; Section 5 discusses the performance
of experimental results with both real and synthetic datasets; and
Section 6 draws conclusions and makes suggestions for future
research.

2 RELATED WORK
RkNN query processing has received considerable attention in the
past two decades [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] because
this query represents a fundamental and crucially important data
processing operation [21, 22]. Intuitively, the RkNN of an object o
are those objects over which o, being one of their k nearest
neighbours, has significant “influence”. Such “influence sets”
may lead to useful observations on the correlation among data, as
shown by Korn and Muthukrishnan in their pioneering paper [21].
Indeed, the RkNN search is inherent to any application where the
similarity between two objects can be quantified into a single
value, using an appropriate evaluating process.

The approach of [21] suggests the pre-computation of the k
nearest neighbours of every data point on the workspace. Then,
given the query point q, the proposed algorithm can compare it to
the existing k-th nearest neighbour of every point. For every data
point p, the algorithm computes and stores a spherical region cen-
tred at p and with a radius equal to the distance from p to its k-th
nearest neighbour, as illustrated by Figure 1 for k = 1. The authors
of [21] prove that if the query point q falls within the spherical
region of p, then p is an RkNN of q. All the circular regions can
be organized into a multi-dimensional index structure, such as the
R-tree [23], for effective storage and query performance. Yang
and Lin [19] make adjustments to this approach and propose the
RDNN-tree (R-tree containing Distance of Nearest Neighbours)
for applications in which both the k nearest neighbours and the
RkNN queries need to be supported. Stanoi et al. [20] divide the
two-dimensional space centred at the query q into six equal
partitions. Their paper demonstrates that only one candidate
R1NN data point can exist in every partition. However, the
number of regions to be searched to find possible candidate R1NN
data points increases exponentially with the dimensionality,
rendering this approach inefficient even in a three dimensional
setting. Later, Tao et al. [17] introduced the TPL index-based
method for the RkNN search. Given a query point q, TPL
recursively prunes the space using the bisector between the query
point q and its k-th nearest neighbour. Some of the most popular
RkNN algorithms are surveyed and empirically compared in [15].

Specialised fields have also applied the RkNN query among
others: large networks and graphs [16], moving objects [12], data
streams [18], uncertain data [14], spatial keywords search [13]
and continuous queries monitoring [11]. All these approaches
assume a fully-trustworthy environment (such as that of a local
database server) and none of them deals with the matter of the
protection of the data’s confidentiality in cases when these data

 3

are outsourced for storage and processing in a potentially
untrustworthy cloud server.

From another viewpoint, there have been significant
developments in the related fields of secure queries processing in
multi-dimensional databases. Various solutions to the opposite
problem of supporting securely the k-nearest neighbours query
have been put forward (the recent work of [6] and [7] contain
references to less recent research efforts). However, since the
nearest neighbour search differs from the reverse nearest
neighbour search, including in the plaintext domain, these models
are not applicable to the problem under consideration in this
paper. Secure range query processing in cloud databases, for both
indexed and non-indexed cloud data, has also received some
attention in recent years [4, 5] but again, these methods cannot be
applied to the RkNN problem. Recently solutions were proposed
for the problems of the top-k query [9], the skyline query [24], as
well as several types of aggregate queries [10].

To the authors’ knowledge, the issue of making secure RkNN
query processing in multi-dimensional databases in the cloud has
not yet been addressed. In the field of untrustworthy location-
based systems, Lin et al. [25] propose an algorithm that computes
the probability of a moving user being the R1NN result of a query
point, on the premise that the mobile users’ locations and
identities are hidden using anonymization techniques. Other
research propose solutions that protect the query input of a RkNN
query that is sent to a location-based service: they employ either a
clocking region that hides the query input [26] or a private
information retrieval technique which accesses the database
anonymously [27]. None of these solutions deals with the
protection of the plaintext database from any unauthorized access
when these data are hosted in an untrustworthy data centre in
current applications.

3 PRELIMINARIES AND NOTATIONS
The model proposed in this paper is based on the DaaS cloud
services model and it is constituted of two separate entities: the
client, who is the legitimate owner of the data, and the cloud
server. The client outsources the data to the server in an encrypted
form with the expectation that s/he will be able to carry out a
remote search without incurring a breach of privacy in the
process. Therefore, one of the goals of the design of the model
should be to prevent the cloud provider or any outsider (hereafter
“the observer”) from obtaining any amount of information about
the protected plaintext database besides what can be derived from
the legitimate client’s encrypted search results. The client, on the
other hand, should be able to obtain access to the plaintext of the
relevant encrypted content. The system should offer an efficient
encrypted RkNN search functionality at a low computation cost
and ensuring secure communication.

The observer is assumed to be honest-but-curious, and to
intend to gain full access to the plaintext of the encrypted stored
data but with no intention of altering any of it. The threats model
also assumes that, besides already knowing all the procedures
involved (such as the encryption and decryption algorithms), the

observer might be able to carry out the known input-output attack,
in which it is assumed that s/he has access to a sample of pairs of
plaintext and ciphertext of data tuples or of the client’s queries, by
knowing which ciphertext corresponds to which plaintext. The
known input-output attack is an attack targeting the encryption
key and all the plaintext tuples of an encrypted dataset to which
the observer has access.

This study considers that every data tuple is a multi-
dimensional point p (p1, p2, ..., pd). It models its d attributes as
dimensions and their values as their coordinates. The data points
construct a dataset P which is encrypted and stored on the cloud.
The RkNN query is defined as follows.

Definition: given a points dataset P and a query point q, a RkNN
query aims to find the subset RkNN (q) of data points in P: RkNN
(q) = {p ∈ P: dist (p, q) ≤ dist (p, pk), where pk is the k-th nearest
neighbour of p and dist is a distance metric (Euclidean distance is
assumed in this paper)}.

4 THE PROPOSED ENCRYPTION SCHEMES

4.1 Solutions that do not rely on data indexing
mechanisms

4.1.1 The Basic Non-Index-based Encryption
Scheme

Every data and query point will be considered as a column vector
p [p1, p2, …, pd]T and q [q1, q2, …, qd]T, respectively, where pT and
qT are the transposes of p and q. Given a dataset P and a query
point q, a simple, yet not secure, solution for computing the RkNN
(q) set will be to initially represent every data point p using two
vectors �̂�= [p1, p2, …, pd, –0.5p2]T and 𝑝𝑠�= [s∙p1, s∙p2, …, s∙pd, s]T,
where p2 is the scalar product between the transpose pT of p and p
in the form p2 = pT

* p = p1∙p1 + p2∙p2 + ... + pd∙pd, and s is a
random positive number. The encrypted versions p' and ps' of the
vectors �̂� and 𝑝𝑠� will be computed as p' = E(p) = M T

* �̂� and ps' =
Es(p) = M –1

* 𝑝𝑠�, respectively, i.e. as a scalar product between the
vectors �̂� and 𝑝𝑠� with a (d + 1) × (d + 1) square matrix M which
will represent the encryption key. These two encrypted values p'
and ps' will then be sent to the server and the first will be stored in
table T while the second will be stored in table Ts. Additionally,
the query point q will be represented as the vector 𝑞𝑠� = [s∙q1, s∙q2,
…, s∙qd, s]T, and its encrypted version qs' = Eq (q) = M –1

* 𝑞𝑠� will
also be stored in table Ts. Using this setting and the secure
k-nearest neighbours query processing model presented in [8], the
server can then pick up every encrypted point p' ∈ T and compute
its k + 1 nearest neighbours from the points that are stored in table
Ts1. If qs' is one of the k + 1 nearest neighbours of any point p',
then p ∈ RkNN (q), thus p' needs to be returned to the client.

1 It should be pointed out that ∀ p' ∈ T the described process will search in table Ts
for the k + 1 nearest neighbours of p' (instead of its k nearest neighbours) because the
corresponding encrypted version ps' ∈ Ts of p' will also be found to be one of the k
nearest points of p' (since they actually coincide), therefore the client will need to
ignore it from the set of the results.

This solution however is not secure: because ∀ p' ∈ T it
preserves the order of the distances of all the data points in table
Ts to p'. For example, this solution would reveal that the nearest
point to a in Figure 1 is the data point c and that the second
nearest is the query point q, the third nearest is the data point e,
etc. In addition, the server will learn that the nearest data point to
c is the query point q, the second nearest is the data point e, etc.
This process will eventually reveal to the server quite a detailed
map of possible positions of all the data points in the workspace.

Figure 2 illustrates a novel solution which will be called the
Basic Non-Index-based Encryption Scheme since it does not requ-
ire that any specialised data indexing method be used to compute
its results. It will be proved that the new scheme does not reveal to
the server anything other than the simple fact that if the query po-
int q is among the k nearest neighbours of every data point, which
is the only information that the server needs to obtain in order to
provide and send to the client the correct encrypted results.

Private Keys: two (d + 1) × (d + 1) invertible matrices M1 and M2.

Data encryption functions: ∀ d-dimensional data point p (p1, p2, …, pd),
three encrypted versions p' , ps' and pss' are computed, using the functions
p' = E(p) = M1 -1

* �̂�, ps' = Es(p) = M1 T
* 𝑝𝑠� and pss' = Ess(p) = M2 T

* 𝑝𝑠𝑠� ,
where �̂�, 𝑝𝑠� and 𝑝𝑠𝑠� are the (d + 1)-dimensional vectors �̂� = [p1, p2, …, pd,
– 0.5p2]T and 𝑝𝑠� = 𝑝𝑠𝑠� = [s∙p1, s∙p2, …, s∙pd, s]T, and s is a random positive
number. The encrypted values <p', ps', pss'> are then sent to the server.

Query encryption function: ∀ query point q (q1, q2, …, qd), its encrypted
version q' is computed using the function q' = Eq(q) = M2 -1

* 𝑞�, where 𝑞� is
the (d + 1)-dimensional vector 𝑞� = [q1, q2, …, qd, –0.5q2]T. The encrypted
value q' is then sent to the server.
Distance comparison operation: assuming the encrypted versions of two
data points p and r and that of a query point q, in order to determine
whether q is nearer to p than r is, the server needs to check whether the
inequality pss' T

* q' ≥ ps' T
* r' holds.

Data decryption function: assuming an encrypted data point pss',
the vector 𝑝𝑠𝑠� is decrypted using the function 𝑝𝑠𝑠� = Ess

 -1(pss') =
= (M2 T) -1 * pss'. The coordinates of p are finally extracted after dividing
𝑝𝑠𝑠� with the positive number s, the value of which can be found in the
(d + 1)-th position of the vector 𝑝𝑠𝑠� .

Figure 2: The Basic Non-Index-based Encryption Scheme.

Theorem 1. The distance comparison operation of the Basic Non-
Index-based Encryption Scheme illustrated in Figure 2 can
correctly determine whether a data point p ∈ RkNN (q).

Proof: assuming two data points p and r and a query point q, by
starting with pss' T

* q' ≥ ps' T
* r' we get the inequality Ess(p) T

*

Eq(q) ≥ Es(p) T
* E(r) ⇔ (M2 T

* 𝑝𝑠𝑠�) T
 * (M2 -1

* 𝑞�) ≥ (M1 T
* 𝑝𝑠�) T

 *
(M1 -1

* �̂�) ⇔ (𝑝𝑠𝑠� T
 * M2) * (M2 -1

 * 𝑞�) ≥ (𝑝𝑠� T
* M1) * (M1 -1

* �̂�) ⇔
𝑝𝑠𝑠� T

 * 𝑞� ≥ 𝑝𝑠� T
* �̂� ⇔ [s∙p1, …, s∙pd, s]

* [q1, …, qd, – 0.5q2]T ≥
[s∙p1, …, s∙pd, s]

* [r1, …, rd, – 0.5r2]T ⇔ s∙p1∙q1 + ... + s∙pd∙qd
– s0.5q2 ≥ s∙p1∙r1 + ... + s∙pd∙pd – s0.5p2 ⇔ 2s∙p1∙q1 + ... + 2s∙pd∙qd
– s(q1

2 + ... + qd
2) – s(p1

2 + ... + pd
2) ≥ 2s∙p1∙r1 + ... + 2s∙pd∙rd

– s(r1
2 + ... + rd

2) – s(p1
2 + ... + pd

2) ⇔ – s(p1
2 – 2p1∙q1 +q1

2) – ...
– s(pd

2 – 2pd∙qd + qd
2) ≥ – s(p1

2 – 2p1∙r1 +r1
2) – ... – s(pd

2 – 2pd∙rd
+ rd

2) ⇔ (p1 – q1)2 + ... + (pd – qd)2 ≤ (p1 – r1)2 + ... + (pd – rd)2 ⇔
dist (p, q) ≤ dist (p, r).

Therefore the distance comparison operation of the Basic
Non-Index-based Encryption Scheme is equivalent to the
inequality dist (p, q) ≤ dist (p, r). Thus, if the server compares the
distance dist (p, q) between a data point p and a query point q,
with the dist (p, r) distance between p and every other data point r
in the dataset, it can be easily determined whether q is among the
k nearest neighbours of p, therefore if p ∈ RkNN (q).

Wong et al. [8] have proved that the preservation through the
encryption scheme of the scalar product between two data points
reveals the distance between the data points. However, the encry-
ption scheme proposed here does not preserve this undesirable
property because, for every data points p and r, the scalar product
ps' T

* r' = Es(p) T
* E(r) = (M1 T

* 𝑝𝑠�) T
 * (M1 -1

* �̂�) = 𝑠𝑝� T
 * �̂� =

– 0.5s(r2 – 2p1∙r1 – ... – 2pd ∙rd) is different from the scalar product
pT

* r = p1∙r1 + ... + pd∙rd. Also, for every data point p, the scheme
does not preserve the scalar product pT

* p between the data point
and itself, since ps' T

* p' = 0.5s∙p2, which is different from the
scalar product pT

* p = p2, bearing in mind that s is an unknown
parameter for the server. The preservation of this product would
also partially compromise the security of the model because it
would reveal to the observer that p lies on a hyper-sphere that is
centred at the origin of the space with a �𝑝12 + … + 𝑝𝑑2 radius.
And last, it is not possible for someone using the proposed scheme
to determine the values of the data point p and of the query point q
by knowing only the values of p', ps', pss' and q' if s/he does not
also know the values of M1 and/or M2.

In addition, by using a different function Eq to encrypt the
query points than the functions E, Es and Ess to encrypt the data
points, it is ensured that the encrypted version q' of a query point
q will not coincide with the corresponding encrypted versions p',
ps' and pss' of any data point p, when q coincides with p, in which
case the server would be able to compute the order of the
distances between all the other data points and p. Also, by
encrypting the query points and the data points using different
encryption functions, in the distance comparison operation the
server cannot replace the encrypted query point with an encrypted
data point, in order to eventually discover the order of distances
between all the data points.

With regard to attacks, the following theorem holds:

Theorem 2: The Basic Non-Index-based Scheme is not secure
against the known input-output attack.

Proof: Assuming that the observer knows both the plaintext p and
the ciphertext values <p', ps', pss'> of a data point (the case of the
knowledge of the plaintext of a query point q and of its
corresponding encrypted version q' is similar), the observer can
use the equalities p' = M1 -1

* �̂� and ps' = M1 T
* 𝑝𝑠� and pss' =

= M2 T
* 𝑝𝑠𝑠� = M2 T

* 𝑝𝑠� in order to construct a set of 3(d + 1)
equations, in which s/he will have 2(d + 1)∙ (d + 1) unknown
parameters in the encryption keys M1 and M2,2 and one unknown
parameter in the vector 𝑝𝑠�, i.e. the random positive value of s.

2 we do not consider unknown parameters for the matrix M1 -1 since its formulation
depends on the formulation of M1.

 5

By knowing, in total, n pairs of plaintext data points and their
corresponding ciphertexts, the observer can construct a set of n3(d
+ 1) equations with 2(d + 1)∙(d + 1) + n unknown parameters. It is
thus clear that if n3(d + 1) ≥ 2(d + 1)∙(d + 1) + n ⇒ n ≥ 2(d +
1)∙(d + 1)/(3d + 2), then the number of equations will be larger
than the number of unknown parameters. Therefore the observer
will be able to solve the system of linear equations to eventually
find the secret keys M1, M2 and the plaintext of every ciphertext.

4.1.2 The Enhanced Non-Index-based Encryption
Scheme

To make the Basic Non-Index-based Encryption Scheme secure
against the known input-output attack, this section presents the
Enhanced Non-Index-based Encryption Scheme, which is a
solution inspired from analogous schemes introduced in [4, 8] for
the range and the k-nearest neighbours queries, respectively. The
new solution suggests the random splitting of all the values in
every (d + 1)-dimensional vector 𝑝𝑠𝑠� and 𝑝𝑠� (we remind here that
𝑝𝑠𝑠� = 𝑝𝑠�) in order to generate two random shares 𝑝𝑠𝑠𝑎� and 𝑝𝑠𝑠𝑏�
(resp. 𝑝𝑠𝑎� and 𝑝𝑠𝑏�), such that ∀ i ∈ {1, ..., d + 1} we will have
𝑝𝑠𝑠� i = 𝑝𝑠𝑠𝑎� i + 𝑝𝑠𝑠𝑏� i (resp. 𝑝𝑠𝑠� i = 𝑝𝑠𝑎� i + 𝑝𝑠𝑏� i). Therefore the
product 𝑝𝑠𝑠� T

 * 𝑞� (resp. 𝑝𝑠� T
 * �̂�) will be equal to 𝑝𝑠𝑠𝑎� T

 * 𝑞� + 𝑝𝑠𝑠𝑏� T

* 𝑞� (resp. 𝑝𝑠𝑎� T
 * �̂� + 𝑝𝑠𝑏� T

 * �̂�). The vector 𝑝𝑠𝑠𝑎� (resp. 𝑝𝑠𝑎�) will be
then encrypted with the secret key Ma1 T (resp. Ma2 T) and the
vector 𝑝𝑠𝑠𝑏� (resp. 𝑝𝑠𝑏�) with the secret key Mb1 T (resp. Mb2 T) in
order to produce the vectors pssa' and pssb' (resp. psa' and psb').
In addition, every vector �̂� will be encrypted twice using the
matrices Ma1 -1 and Mb1

-1, in order to produce the vectors pa' and
pb', respectively. Every query point vector 𝑞� will also be
encrypted twice, using the matrices Ma2 -1 and Mb2

-1, in order to
produce the vectors qa' and qb', respectively. The final distance
comparison operation will be performed using the equation pssa' T

* qa' + pssb' T
 * qb' ≥ psa' T

 * ra' + psb' T * rb' ⇔ (Ma2 T
* 𝑝𝑠𝑠𝑎�) T

 *
Ma2 -1

* 𝑞� + (Mb2 T
* 𝑝𝑠𝑠𝑏�) T

 * Mb2 -1
* 𝑞� ≥ (Ma1 T

* 𝑝𝑠𝑎�) T
 * Ma1 -1

* �̂�
+ (Mb1 T

* 𝑝𝑠𝑏�) T
 * Mb1 -1

* �̂� ⇔ 𝑝𝑠𝑠𝑎� T
 * 𝑞�+ 𝑝𝑠𝑠𝑏� T

 * 𝑞� ≥ 𝑝𝑠𝑎� T
 * �̂�+

𝑝𝑠𝑏� T
 * �̂� ⇔ 𝑝𝑠𝑠� T

 * 𝑞� ≥ 𝑝𝑠� T
 * �̂�, for which the proof of Theorem 1

shows that it is equivalent to the inequality dist (p, q) ≤ dist (p, r).
However to achieve a higher level of security, instead of

splitting the values in the vectors 𝑝𝑠𝑠� and 𝑝𝑠�, the method can split
the values of 𝑝𝑠𝑠� and 𝑝𝑠� in only some of the rows, together with
the values in some other rows of 𝑞� and �̂�, respectively (however,
we cannot split the values in the same rows in all 𝑝𝑠𝑠� , 𝑝𝑠�, 𝑞� and �̂�
at the same time). Therefore, during the encryption, the client will
need to store two configuration bit strings Sss and Ss, which are (d
+ 1)-bits vectors, with every entry in Sss (resp. Ss) indicating whe-
ther pss-splitting or q-splitting (resp. ps-splitting or p-splitting) is
used for the corresponding row in 𝑝𝑠𝑠� and 𝑞� (resp. 𝑝𝑠� and �̂�). Sin-
ce there are 2(d + 1) possible configurations per (d + 1)-bits vector,
the Enhanced Non-Index-based Scheme is more secure against
attacks in comparison to the Basic Non-Index-based Scheme.

To boost security further, the solution suggests the increase of
the d number of dimensions by adding artificial attributes to all �̂�,
𝑝𝑠� , 𝑝𝑠𝑠� and 𝑞� . This can be achieved by extending every d + 1
column vector to a d' + 1 column vector by padding artificial

Private Keys: four (d' + 1) × (d' + 1) invertible matrices Ma1, Mb1, Ma2
and Mb2, two configuration (d' + 1)-bits strings Ss and Sss and two series
of d' − d pre-generated random numbers wsd+2, ..., wsd' + 1 and wssd+2, ...,
wssd' + 1.

Data encryption functions: ∀ d-dimensional data point p (p1, p2, …, pd),
six encrypted quantities pa', pb', psa', psb', pssa' and pssb' are computed,
as follows:
• pa'= Ma1 -1

* 𝑝𝑎� and pb' = Mb1 -1
* 𝑝𝑏� , where 𝑝𝑎� + 𝑝𝑏� = �̂�,

• psa' = Ma1 T
* 𝑝𝑠𝑎� and psb' = Mb1 T

* 𝑝𝑠𝑏� , where 𝑝𝑠𝑎� + 𝑝𝑠𝑏� = 𝑝𝑠�
and

• pssa' = Ma2 T
* 𝑝𝑠𝑠𝑎� and pssb' = Mb2 T

* 𝑝𝑠𝑠𝑏� , where 𝑝𝑠𝑠𝑎� + 𝑝𝑠𝑠𝑏� =
= 𝑝𝑠𝑠� .

The parameters �̂�, 𝑝𝑠�, and 𝑝𝑠𝑠� are (d' + 1)-dimensional vectors. The first
d + 1 dimensions of these are the same as in the corresponding vectors �̂�,
𝑝𝑠� and 𝑝𝑠𝑠� in the Basic Non-Index-based Scheme in Figure 2 and for the
remainder i = d + 2 to i = d' + 1 dimensions, if Ssi = 1 then �̂�i = wsi and 𝑝𝑠� i
is set to be equal to a random number (resp. if Sssi = 1 then 𝑝𝑠𝑠� i is set to
be equal to a random number), otherwise if Ssi = 0 then �̂�i is set to be
equal to a random number and �̂�𝑠i = wsi (resp. if Sssi = 0 then 𝑝𝑠𝑠� i = wssi).
For the last dimension with which Ssi = 0, �̂�i is given a value so that the
scalar product over its artificial attributes d + 2 to d' +1 is 0 (see [8] for
more details). Also, for the last dimension with which Ssi = 1 (resp.
Sssi = 1), 𝑝𝑠� i (resp. 𝑝𝑠𝑠� 𝑖) is given a value so that the scalar product over its
artificial attributes d + 2 to d' + 1 is 0. Additionally, for ∀ i, if Ssi = 1, then
the value of �̂�i is randomly split into 𝑝𝑎� i and 𝑝𝑏� i. In this case, 𝑝𝑠𝑎� i and
𝑝𝑠𝑏� i are both set to be equal to 𝑝𝑠� i (resp. if Sssi = 1 then 𝑝𝑠𝑠𝑎� i and 𝑝𝑠𝑠𝑏� i
are both set to be equal to 𝑝𝑠𝑠� i). Otherwise, if Ssi = 0 then 𝑝𝑎� i and 𝑝𝑏� i are
both set to be equal to �̂�i and the value of 𝑝𝑠� i is randomly split into 𝑝𝑠𝑎� i
and 𝑝𝑠𝑏� i (resp. if Sssi = 0 then the value of 𝑝𝑠𝑠� i is randomly split into
𝑝𝑠𝑠𝑎� i and 𝑝𝑠𝑠𝑏� i). The encrypted values <(pa', pb'), (psa', psb'), (pssa',
pssb')> are sent to the server.

Query encryption functions: ∀ query point q (q1, q2, …, qd), two
encrypted parts qa' and qb' are computed using the functions qa' =
= Ma2 -1

* 𝑞𝑎� and qb' = Mb2 -1
* 𝑞𝑏� , where 𝑞𝑎� + 𝑞𝑏� = 𝑞� and 𝑞� is a

(d' + 1)-dimensional vector, in which the first d + 1 dimensions have the
same value as the corresponding vector 𝑞� in the Basic Non-Index-based
Encryption Scheme in Figure 2 and for the remainder i = d + 2 to i = d' + 1
dimensions, if Sssi = 1 then 𝑞� i = wssi, otherwise 𝑞� i is set to be equal to a
random number. For the last dimension with which Sssi = 0, 𝑞�i is given a
value so that the scalar product over the artificial values i = d + 2 to
i = d' + 1 is 0. Additionally, ∀ i, if Sssi = 1 then the value of 𝑞� i is randomly
split into 𝑞𝑎� i and 𝑞𝑏� i. Otherwise, if Sssi = 0 then 𝑞𝑎� i and 𝑞𝑏� i are both set to
be equal to 𝑞�i. The encrypted values <qa', qb'> are sent to the server.

Distance comparison operation: assuming the encrypted tuples of two
data points p and r and of a query point q, in order to determine whether q
is nearer to p than r is, the server needs to check whether the inequality
pssa' T

* qa' + pssb' T
* qb' ≥ psa' T

* ra' + psb' T
* rb' holds.

Data decryption function: assuming an encrypted data point in the form
<pssa', pssb'>, the vector 𝑝𝑠𝑠� is decrypted using the function 𝑝𝑠𝑠� =
= 𝑝𝑠𝑠𝑎� + 𝑝𝑠𝑠𝑏� = (Ma2 T) -1 * pssa' + (Mb2 T) -1 * pssb'. The coordinates of p
are finally extracted after dividing 𝑝𝑠𝑠� with the positive number s, the
value of which can be found in the (d + 1)-th position of the vector 𝑝𝑠𝑠� .

Figure 3: The Enhanced Non-Index-based Encryption Scheme.

values such that the scalar product over the added attribute values
will be 0.

Figure 3 summarizes the procedures implementing the
proposed Enhanced Non-Index-based Scheme.

Theorem 3: The Enhanced Scheme is secure against the known
input-output attack if the sample that is known to the observer is
made up of pairs of plaintext and ciphertext tuples of data points.
It is not secure if the known sample is made up of pairs of
plaintext and ciphertext tuples of the client’s queries.

Proof: For the sake of simplicity, we shall assume that d' = d, i.e.
that no artificial dimensions have been added (the addition of
artificial attributes can only make the scheme more secure).
Depending on the external knowledge available, the observer
might issue a known input-output attack targeting the secret keys
Ma1, Mb1, Ma2 and Mb2 or targeting directly the plaintext dataset.

In the first case we shall assume that the observer knows a
sample of n pairs of plaintext and ciphertext tuples of data points.
For every such pair of a plaintext p and its corresponding tuple of
encrypted values <pa', pb', psa', psb', pssa', pssb'>, the observer
can use the following six equalities:
• pa' = Ma1 -1

* 𝑝𝑎� and pb' = Mb1 -1
* 𝑝𝑏�

• psa' = Ma1 T
* 𝑝𝑠𝑎� and psb' = Mb1 T

* 𝑝𝑠𝑏� , and
• pssa' = Ma2 T

* 𝑝𝑠𝑠𝑎� and pssb' = Mb2 T
* 𝑝𝑠𝑠𝑏� ,

in order to construct a set of 6(d + 1) equations, in which s/he will
have 4(d + 1)∙(d + 1) unknown parameters in the encryption keys
Ma1, Mb1, Ma2 and Mb2, and 6(d + 1) unknown parameters in the
vectors 𝑝𝑎� , 𝑝𝑏� , 𝑝𝑠𝑎� , 𝑝𝑠𝑏� , 𝑝𝑠𝑠𝑎� and 𝑝𝑠𝑠𝑏� since s/he does not
know how these vectors have been created, i.e. s/he does not
know the configuration bit strings Ss and Sss.3

By knowing in total n pairs of plaintext data points and their
corresponding ciphertexts, the observer can construct a set of
n6(d + 1) equations with 4(d + 1)∙(d + 1) + n6(d + 1) unknown
parameters. It becomes thus clear that, independently of the value
of n, there will always be 4(d + 1)∙(d + 1) more unknown
parameters than there are equations, preventing the observer from
working out the system of linear equations and from finding the
secret keys Ma1, Mb1, Ma2 and Mb2. Thus, the scheme can
guarantee protection against the input-output attack if the known
sample is made up of pairs of plaintext and ciphertext tuples of
data points.

In the second case it will be assumed that the observer knows
a sample of n pairs of plaintext and ciphertext of the client’s
queries. Two sub-cases need to be examined here. If the observer
targets the queries encryption keys Ma2 -1 and Mb2 -1, then a study
similar to that of the known sample of pairs of plaintext and
ciphertext data tuples conducted above will prove that the
proposed model is secure. However in the case of a known sample
of pairs of plaintext and ciphertext queries, the observer can also
target directly the plaintext coordinates of the data points without
needing to work out the encryption keys beforehand. Assuming an
unknown data point p and a known query point q, the observer
can use the equation pssa' T

 * qa' + pssb' T
 * qb' = 𝑝𝑠𝑠� T

 * 𝑞� in order

3 it must be pointed out that, in the case of a brute-force approach the observer would
need to examine all possible bit vectors Ss and Sss, which would lead to
(2(d + 1))∙(2(d + 1)) candidate systems of linear equations, that cannot be expected to be
solved in reasonable time, especially if d is a large number. However, even if the
observer manages to work out these systems, they will produce (2(d + 1))∙(2(d + 1))
candidate quadruplets of encryption keys <Ma1, Mb1, Ma2, Mb2>, with a
1/((2(d + 1))∙(2(d + 1))) probability that any single one of these might be the correct one.

to construct one equation, in which s/he will have d + 1 unknown
parameters in the vector 𝑝𝑠𝑠� (i.e. the coordinates of the data point
p and the random number s).

By knowing in total n pairs of query points and their
corresponding encrypted versions, the observer can construct a
system of n equations with d + 1 unknown parameters in order to
derive the coordinates of p. It is thus clear that if n ≥ d + 1 then
the number of equations will be larger than the number of
unknown parameters. Therefore the observer will be able to solve
the system of linear equations and find the coordinates of p. Thus,
the scheme is not secure against the query input-output attack.

4.2 Solutions that rely on data indexing
mechanisms

4.2.1 The Basic Index-based Encryption Scheme
Since the encryption schemes that do not rely on any sophisticated
indexing mechanism need to compare the distance dist (p, q)
between every data point p to the query point q against the
distance dist (p, r) of p to every other data point r in the dataset,
the performance cost of these schemes in respect of processing the
RkNN query is analogous to O (n2), where n is the dataset
cardinality. In order to reduce this cost, and especially with regard
to large-scale databases, solutions will be proposed that rely on
data indexing methods so that the RkNN query results can be
produced faster. The schemes will put forward a secure version of
the pioneer RkNN method proposed in [21]. A secure version of
the SS-tree [28] structure, called the S3-tree (Secure SS-tree), will
serve as the backbone spatial indexing method for processing the
query on the server-side. The description of the S3-tree is as
follows:
– Every node contains between b and B entries, unless it is the

root node of the tree. The root has at least two entries, unless it
is a leaf.

– Every leaf entry U is a minimum bounding hyper-sphere
(MBS) which corresponds to a vicinity sphere centred at a
specific d-dimensional data point p (p1, p2, …, pd) with a radius
l that is equal to the Euclidean distance between p and its k-th
nearest neighbour data point. The entry U is stored in the server
in its encrypted form U', using the function U' = E(p, l) =
= M T

* 𝑈�, where M is a 3d × 3d invertible matrix that serves as
the encryption key, and 𝑈� is the 3d-dimensional vector 𝑈�=
= [sp, sp∙p1, sp(p1

2 – l2/d), …, sp, sp∙pd, sp(pd
2 – l2/d)]T, in which

sp is a random positive number.
– For every non-leaf entry <ptr, U>, ptr is a pointer to a child

node and U is the MBS that completely encloses the hyper-
spheres in that descendant node. The MBS U is represented
using its centroid point c (c1, …, cd) and its radius l. The entry
U is stored in the server in its encrypted form U', using the
same function as in the corresponding case of the leaf entries.

– All the leaves of the tree appear at the same level.
The difference between the traditional SS-tree and the S3-tree lies,
therefore, in the fact that the latter stores encrypted MBSs instead
of plaintext MBSs in its leaves and in its non-leaf nodes. While

 7

x

 y

Ο

R4
R1

R3
R2

a

d
g

j
b

c

f

h

i
e

k

q

(a)

c b a e d h i g f j k

R3 R4 R2 R1

(b)

Figure 4. (a) a set of eleven two-dimensional data points and (b)
the S3-tree for k = 1 built on top of these objects.

the S3-tree was selected as the backbone indexing model, several
other data partitioning indexing methods can also be used instead
for medium- or high- dimensional workspaces, with the proper
adjustment.

Using the S3-tree, the RkNN of a query point q can be
efficiently retrieved using a point location query which will target
the hyper-spheres that contain q. Figure 4 illustrates several data
points in the two-dimensional space together with their MBSs,
and the corresponding S3-tree for k = 1 built on top of these
MBSs, assuming a minimum and maximum node capacity of
b = 2 and B = 4 records, respectively (for the sake of simplicity,
the data points are shown in the leaves of the S3-tree, instead of
their encrypted MBSs, which are omitted). The R1NN query for
the given point q in Figure 4(a) will return the data points
R1NN (q) = {h, i}, because q falls inside the circles of h and i. The
correction study of the above strategy is provided in [21]. Figure 5
summarizes the procedures implementing the proposed Basic
Index-based Encryption Scheme.

Theorem 4. The range enclosure operation of the Basic Index-
based Encryption Scheme illustrated in Figure 5 can correctly
determine whether a data point p ∈ RkNN (q).

Proof: Assuming that q' = Eq(q) is the encrypted version of the d-
dimensional query point q, for every level of the S3-tree, the
server will use the range enclosure operation in Figure 5 in order
find out if q lies inside any of the MBSs U in the S3-tree, where U
is centered at the point c (c1, …, cd) and having a radius l.
By starting with U' T

* q' ≤ 0 we get E(c, l) T * Eq(q) ≤ 0 ⇔
(M T

* 𝑈�) T * (M -1
* 𝑞�) ≤ 0 ⇔ 𝑈� T * M * M -1

* 𝑞� ≤ 0 ⇔ 𝑈� T * 𝑞� ≤ 0
⇔ [sp, sp∙c1, sp(c1

2 – l2/d), …, sp, sp∙cd, sp(cd
2 – l2/d)] * [sq∙q1

2,
– 2sq∙q1, sq, …, sq∙qd

2, – 2sq∙qd, sq]T ≤ 0 ⇔ sp∙sq((q1
2 – 2c1∙q1

+ (c1
2 – l2/d)) + ... + (qd

2 – 2cd∙qd + (cd
2 – l2/d))) ≤ 0 ⇔ (q1 – c1)2

+ ... + (qd – cd)2 ≤ l2 ⇔ dist2(q, c) ≤ l2 ⇔ dist (q, c) ≤ l.

Private Key: a 3d × 3d invertible matrix M.

Data encryption functions:
• In the leaf nodes of the S3-tree, every d-dimensional MBS U centered

at a specific data point p (p1, p2, …, pd) with a radius l that is equal to
the Euclidean distance between p and its k-th nearest neighbour data
point, is encrypted using the function U' = E(p, l) = M T

* 𝑈�, where 𝑈�
is the 3d-dimensional vector of the form 𝑈�= [sp, sp∙p1, sp(p1

2 – l2/d),
…, sp, sp∙pd, sp(pd

2 – l2/d)] T, in which sp is a random positive number.
• In the non-leaf nodes of the S3-tree, every d-dimensional MBS U

centered at the point c (c1, …, cd) and having a radius l is encrypted
using the same function U' = E(c, l) = M T

* 𝑈� as in the leaf nodes.

Query encryption function: ∀ query point q (q1, q2, …, qd), its encrypted
version q' are computed using the function q' = Eq(q) = M -1

* 𝑞�, where 𝑞� is
a 3d-dimensional vector 𝑞�= [sq∙q1

2, – 2sq∙q1, sq, …, sq∙qd
2, – 2sq∙qd, sq] T, in

which sq is a random positive number.

Range enclosure operation: On every level of the S3-tree, assuming U' =
E(c, l) and q' = Eq(q), in order to determine whether the query point q lies
within a hyper-sphere U centered at a point c with a radius l, the server
needs to check whether U' T

* q' ≤ 0 holds.

Data decryption function: assuming an encrypted MBS U', the vector 𝑈�
is decrypted using the function 𝑈� = E -1 (U') = (M T) -1 * U'. The
coordinates of the centroid data point p of the MBS U are finally extracted
after dividing 𝑈� by the positive number sp, the value of which can be
found in the first cell of 𝑈�.

Figure 5. The Basic Index-based Encryption Scheme.

Therefore, the evaluation U' T
* q' ≤ 0 is equivalent to checking

whether q lies within the hyper-sphere U. It must be kept in mind
that at the leaf level of the tree, the centre point of U is a data
point p and the radius l is equal to the Euclidean distance between
p and its k-th nearest neighbour data point. Therefore the Basic In-
dex-based Encryption Scheme can correctly determine whether q
is among the k nearest neighbours of p, therefore if p ∈ RkNN (q).

With regard to the scheme’s resistance to attacks, the
following theorem holds.

Theorem 5: The Basic Index-based Encryption Scheme is not
secure against the input-output attack.

Proof: Assuming that the observer has knowledge of the plaintext
p and of the radius l of its vicinity hyper-sphere U, as well as of
the corresponding ciphertext U' (the case of the knowledge of a
query point q and of its corresponding encrypted version q' is
similar), the observer can use the equality U' = M T

* 𝑈� in order to
construct a system of 3d equations, in which s/he will have
(3d)∙(3d) unknown parameters in the encryption key M and one
unknown parameter in 𝑈�, i.e. the random number sp.

By knowing, in total, n pairs of plaintext data points (together
with their vicinity hyper-spheres) and their corresponding
ciphertexts, the observer can construct a set of n3d equations with
3d3d + n unknown parameters. It is thus clear that, if
n3d ≥ (3d)∙(3d)+ n ⇒ n ≥ 9d2/(3d – 1), the number of equations
will be larger than the number of unknown parameters. Therefore
the observer will be able to solve the system of linear equations
and will eventually work out the secret key M and the plaintext of
every ciphertext.

4.2.2 The Enhanced Index-based Encryption
Scheme

To make the Basic Index-based Encryption Scheme secure against
known input-output attacks, this section suggests the random
splitting of all the values in every 3d-dimensional column vector
𝑈� in order to generate two random shares for each, i.e. 𝑈𝑎� and
𝑈𝑏� , such that ∀ i ∈ {1, ..., 3d} we will have 𝑈� i = 𝑈𝑎� i + 𝑈𝑏� i.
Therefore the product 𝑈� T

 * 𝑞� will be equal to 𝑈𝑎� T
 * 𝑞� + 𝑈𝑏� T

 * 𝑞�,
respectively. The vector 𝑈𝑎� will be then encrypted with the secret
key Ma T in order to produce the vector Ua', and the vector 𝑈𝑏�
will be encrypted with the secret key Mb T in order to produce the
vector Ub'. In addition, every query point vector 𝑞� will be
encrypted twice, using the matrices Ma -1 and Mb -1, in order to
produce the vectors qa' and qb', respectively. The final range
enclosure evaluation will be performed using the equation:
Ua’ T

 * qa' + Ub' T
 * qb' ≤ 0 ⇔ (Ma T

* 𝑈𝑎�) T
 * Ma -1

* 𝑞� +
(Mb T

* 𝑈𝑏�) T
 * Mb -1* 𝑞� ≤ 0 ⇔ 𝑈𝑎� T

 * 𝑞�+ 𝑈𝑏� T
 * 𝑞� ≤ 0 ⇔ 𝑈� T

 * 𝑞� ≤ 0.
For a higher level of security, instead of splitting the values in

the vector 𝑈�, the method can split the values in some of the rows
of 𝑈� and the values in some other rows of 𝑞�. Therefore, during the
encryption phase, the client will need to store a configuration bit
string S, which is a 3d-bits vector, with every entry in it indicating
whether data-splitting or query-splitting is used for the
corresponding row in 𝑈� and 𝑞� . Since there are 23d possible
configurations of the bit string S, the Enhanced Index-based
Encryption Scheme is more secure against attacks as compared to
the Basic Index-based Encryption Scheme.

To boost security further, we can once again increase the
number of dimensions, from d to d', by adding artificial attributes
to 𝑈� and 𝑞�, so that the scalar product between 𝑈� and 𝑞� over the
added attribute values will be 0.

Figure 6 summarizes the procedures implementing the
proposed Enhanced Index-based Encryption Scheme.

Theorem 6: The Enhanced Index-based Encryption Scheme is
secure against the input-output attack.

Proof: It will be assumed that d' = d, i.e. that no artificial
dimensions have been added.

In the first case we will assume that the observer has
knowledge of a sample of n pairs of plaintext and ciphertext data
tuples. For every such tuple of a plaintext p together with the
radius l of its vicinity hyper-sphere U and the corresponding
ciphertext U', the observer can use the equalities Ua = Ma T

* 𝑈𝑎�
and Ub = Mb T

* 𝑈𝑏� in order to construct a set of 2(3d) equations,
in which s/he will have 2(3d)∙(3d) unknown parameters in the
encryption keys Ma and Mb, 3d unknown parameters in the vector
𝑈𝑎� and 3d unknown parameters in the vector 𝑈𝑏� (since s/he does
not know how these two vectors have been created, i.e. s/he does
not know the configuration bit string S).

By knowing in total n pairs of plaintext data points (together
with the radius of their vicinity hyper-spheres) and their corres-
ponding ciphertexts, the observer can construct a set of n2(3d)
equations with 2(3d)∙(3d) + n3d + n3d unknown parameters. It is
thus evident that, independently of the value of n, there will al-

Private Keys: two 3d' × 3d' invertible matrices Ma and Mb, a
configuration 3d'-bits string S, and 3d' − 3d pre-generated random
numbers w3d+1, w3d+2, ..., w3d'.
Data encryption functions: In the leaf (resp. in the non-leaf) nodes of the
S3-tree, ∀ d-dimensional MBS U centred at a data point p (p1, p2, …, pd)
with a radius l that is equal to the Euclidean distance between p and its k-
th nearest neighbour data point (resp. centered at the point c (c1, …, cd)
with a radius l), two encrypted parts Ua' and Ub' are computed using the
functions Ua' = Ma T

* 𝑈𝑎� and Ub' = Mb T
* 𝑈𝑏� , where 𝑈� = 𝑈𝑎� + 𝑈𝑏� is a

3d'-dimensional vector, in which the first 3d dimensions are the same as in
the corresponding vector 𝑈� in the Basic Index-based Encryption Scheme
in Figure 5 and for the remainder i = 3d + 1 to i = 3d' dimensions, if Si = 0
then 𝑈�i = wi, otherwise 𝑈�i is set to be equal to a random number. For the
last dimension for which Si = 1, 𝑈� i is given a value so that the scalar
product over its artificial dimensions 3d + 1 to 3d' is 0. Additionally,
∀ i, if Si = 1 then the value of 𝑈� i is randomly split into 𝑈𝑎� i and 𝑈𝑏� i.
Otherwise, if Si = 0 then 𝑈𝑎� i and 𝑈𝑏� i are both set to be equal to 𝑈�i.

Query encryption function: ∀ query point q (q1, q2, …, qd), two
encrypted parts qa' and qb' are computed using the functions qa' =
= Ma -1

* 𝑞𝑎� and qb' = Mb -1
* 𝑞𝑏� , where 𝑞𝑎� + 𝑞𝑏� = 𝑞� and 𝑞� is a

3d'-dimensional vector, in which the first 3d dimensions have the same
value as the corresponding vector 𝑞� in the Basic Index-based Encryption
Scheme in Figure 5 and for the remainder i = 3d + 1 to i = 3d' dimensions,
if Si = 1 then 𝑞� i = wi, otherwise 𝑞� i is set to be equal to a random number.
For the last dimension with which Si = 0, 𝑞� i is given a value so that the
scalar product over the artificial attributes i = 3d + 1 to i = 3d' is 0.
Additionally, ∀ i, if Si = 0 then the value of 𝑞�i is randomly split into 𝑞𝑎� i
and 𝑞𝑏� i. Otherwise, if Si = 1 then 𝑞𝑎� i and 𝑞𝑏� i are both set to be equal to 𝑞�i.

Range enclosure operation: In every level of the S3-tree, assuming
U' = E(p, l) = Ua' + Ub' and q' = Eq(q) = qa' + qb', in order to determine
whether q lies within a hyper-sphere U, the server needs to check whether
Ua' T

* qa' + Ub' T
* qb' ≤ 0 holds.

Data decryption function: assuming an encrypted MBS U' in the form
<Ua', Ub'>, the vector 𝑈� is decrypted using the function 𝑈� = 𝑈𝑎� + 𝑈𝑏� =
= (Ma T) -1 * Ua' + (Mb T) -1 * Ub'. The coordinates of the centroid data
point p of the MBS U are finally extracted after dividing 𝑈� with the
positive number sp, the value of which can be found in the first cell of 𝑈�.

Figure 6. The Enhanced Index-based Encryption Scheme.

ways be 2(3d)∙(3d) more unknown parameters than there are
equations. Therefore, the observer will not be able to solve the
system of linear equations in order to find the secret keys Ma and
Mb. Thus the scheme can guarantee protection against the known
input-output attack if the sample that is known to the observer is
made up of pairs of plaintext and ciphertext tuples of data points.

In the second case we will assume that the observer has
knowledge of a sample of n pairs of plaintext and ciphertext of the
client’s queries. Two sub-cases need to be examined here. In the
first sub-case, the observer may target the encryption keys Ma -1
and Mb -1, in which sub-case, with a study similar to the one
conducted above for the case of the known sample of pairs of
plaintext and ciphertext data tuples, we can prove that the
proposed model is secure. In the second sub-case, the observer
may target directly the plaintext coordinates of the data points,
without needing to solve the encryption keys beforehand.
Assuming the vicinity hyper-sphere U of an unknown data point p

 9

and a known query point q, the observer can use the equation
Ua’ T

 * qa' + Ub' T
 * qb' = 𝑈� T

 * 𝑞� in order to construct one
equation, in which s/he will have d + 2 unknown parameters in the
vector 𝑈� (i.e. the coordinates of a data point p, plus the radius l of
its vicinity hyper-sphere and the random number sp) and one
unknown parameter in the vector 𝑞� (i.e. the random number sq).

By knowing in total n pairs of query points and their
corresponding encrypted versions, the observer can construct a
system of n equations with (d + 2) + n unknown parameters to
derive the coordinates of p. Since independently of the value of n,
there will always be (d + 2) more unknown parameters than there
are equations, the observer will not be able to solve the system of
linear equations in order to find the coordinates of p. Thus the
scheme can guarantee protection against the input-output attack.

5 EXPERIMENTAL EVALUATION
This section presents an experimental performance evaluation of a
prototype implementation of the four proposed schemes in Java.
The workstation that was used for simulating the two participants,
i.e. the client and the server, was equipped with Intel Core i7 CPU
running at 3.4GHz with 32GB RAM and Microsoft Windows 10
Professional 64-bit OS. The file system page size and the S3-tree
node size for the index-based encryption schemes is considered to
be equal to 16 Kbytes. The experiments were conducted using two
datasets, the Forest ‘Covertype’ dataset from the University of
California Irvine machine learning repository [29], which is a
real-life dataset for forest measurements counting 581,012
54-dimensional points (only the first 10 dimensions per data point
are considered in the experiments because of the large number of
zero values appearing in the remaining dimensions), as well as a
synthetic dataset containing an equal number of 581,012
uniformly distributed 100-dimensional points.

Every one of the experiments was repeated ten times and the
average value of every measured parameter was calculated at
every run. In respect of the RkNN query processing on the server-
side, a different randomly located query point was chosen with
every renewed execution of the process. In the case of the two
enhanced encryption schemes, the number of artificial dimensions
d' – d was set to be equal to twice the d number of dimensions of
the actual data points, therefore d' = 3d. If the findings of the
performance investigation of the four proposed schemes are
comparable, irrespective of whether the real or the synthetic data
are used, then only half of these (i.e. either with the real or with
the synthetic data) are depicted.

The graphs of the first experiment in Figure 7 study the
impact of the d number of data dimensions on the size of the
database that is stored on the server-side for all four proposed
schemes, using both the Covertype and the synthetic datasets. As
a result of artificial dimensions having been added, the enhanced
schemes appear to need more space to store the encrypted
database than is needed by their counterpart basic schemes.
According to Figure 2, the ciphertext of every data point in the
Basic Non-Index-based Encryption Scheme is comprised of three
encrypted (d + 1)-dimensional vectors, therefore its size is compa-

(a)

(b)

Figure 7: Database size: The impact of the number of dimensions
on the database size using (a) real data and (b) synthetic data.

rable to the size of the ciphertext of every data point in the Basic
Index-based Encryption Scheme, which, according to Figure 4, is
comprised of one 3d-dimensional vector. Similarly, the size of
every encrypted data point in the Enhanced Non-Index-based and
in the Enhanced Index-based Encryption Schemes is also
comparable. On this basis, Figure 7 shows that, clearly, the Basic
and Enhanced Index-based Encryption Schemes need more space
to store the data than the corresponding Non-Index-based
Encryption Schemes do, which difference in size is added for the
storage of the S3-tree index. It is also observed that the node
utilization in the S3-tree was about 85%, which is quite similar to
that reported in [28] using plaintext data.

The next graphs in Figure 8 study the impact of the d number
of data dimensions on the encryption time on the client-side for all
four proposed schemes, using both the real-life and the synthetic
datasets. The two graphs show an expected growth of the time
cost as the number of data dimensions increases. The graphs also
show that the Index-based Encryption Schemes need more time to
encrypt the data in comparison to their counterpart Non-Index-
based Encryption Schemes, which extra time is used to construct
the encrypted index. It should be pointed out, however, that the
data encryption time cost will be spent only once, which is in the
beginning of the lifetime of every database.

(a)

(b)

Figure 8: Data encryption: The impact of the number of
dimensions on the data encryption time using (a) real data and (b)

synthetic data.

The next two graphs in Figure 9 (please note the logarithmic
scale on the y-axis in both graphs) indicate the time cost for pro-
cessing the RkNN query on the server-side using the Covertype
dataset. Figure 9(a) studies the impact of the d number of data
dimensions on the query execution time for k = 1. The results in
the graph indicate an expected growth of the time cost in relation
to the increase of the number of data dimensions. The graph also
points to the definite superiority of the Index-based Encryption
Schemes in supporting the query, in comparison to the correspon-
ding Non-Index-based Encryption Schemes, because the latter
need O (n2) time to process the query, where n is the dataset size;
while the Index-based Encryption Schemes can prune large parts
of the dataset and they need to process only a small fraction of it.

Figure 9(b) studies the impact of the k number of nearest
neighbours on the query execution time for all four proposed
schemes. The results for the Non-Index-based Encryption
Schemes indicate that the processing time cost is not affected by
the value of k since, in every query evaluation, these schemes ac-
cess all the points in the database. The results for the Index-based
Encryption Schemes indicate a slight gradual increase of the
processing time with the increase of the value of k. This happens
because the increase of k increases the radius of the MBS of every
data point in the S3-tree (keeping in mind that the radius of the

(a)

(b)

Figure 9: RkNN query: (a) The impact of the number of
dimensions, and (b) the impact of the number of nearest

neighbours, in both cases, on the query execution time, using the
real-life dataset.

MBS is the Euclidean distance between the data point and its k-th
nearest neighbour data point), therefore, the increase of k enlarges
the overlap between the stored MBSs in the S3-tree, which results
in the RkNN query algorithm accessing more branches of the tree
when processing the query. In this experiment the number of data
dimensions is considered to be d = 4 (thus d' = 12).

6 CONCLUSIONS AND FUTURE RESEARCH
The paper proposes efficient solutions to evaluate securely

RkNN query predicates directly over encrypted sensitive data in
the cloud. The research in searchable encryption to-date has
mainly focused on range, k-nearest neighbours and top-k queries.
Although the literature has demonstrated that the RkNN query is a
fundamental and crucially important tool for data processing in
many application domains, and although the algorithms for
processing other types of database queries such as the range and
nearest neighbour queries are inefficient with regard to answering
the RkNN query, this work, to the author’s knowledge, is the first
to put forward schemes for the secure processing of this query on
untrustworthy cloud servers.

 11

The paper introduces several encryption schemes with proved
realistic security guaranties and efficient performance, which has
been put to the test through an experimental evaluation using a
real-life and a synthetic dataset. Two of the proposed schemes
mobilize a new specialized indexing method, named S3-tree, in
order to provide in practice an efficient query processing cost in
massive quantities of encrypted data.

Plans for the future include endeavouring to further optimize
the proposed encryption schemes towards improving their speed,
without undermining their security. The flexibility of the new
schemes with handling updates in dynamic datasets will also be
explored. And last, the construction of models for supporting
other well-known queries for multi-dimensional data will also be
examined, including the bichromatic RkNN query [30], closely
related to our problem, in which two types of datasets of points
are recognised, the “users” and the “facilities”, and for a specific
facility q the query looks for the set of users that have q between
their k nearest neighbours facilities.

REFERENCES
[1] Takabi, Η., Joshi, Β., and Ahn, G.J.: Security and privacy challenges

in cloud computing environments. IEEE Security and Privacy, 8(6),
(2010) 24-31.

[2] Hacıgümüs, H., Iyer, B., Li, C., and Mehrotra, S.: Executing SQL
over Encrypted Data in the Database-As-a-Service Model. In
Proceedings of the ACM International Conference on Management
of Data (SIGMOD). (2002) 216-227.

[3] Song, D.X., Wagner, D., and Perrig, A.: Practical techniques for
searches on encrypted data. In Proceedings of the IEEE Symposium
on Security and Privacy, (S&P), (2000) 44-55.

[4] Tzouramanis, T.: Secure Range Query Processing over
Untrustworthy Cloud Services. In Proceedings of the 21st ACM
International Database Engineering and Applications Symposium
(IDEAS), (2017) 108-117.

[5] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., and Perrig, A.:
Multi-dimensional Range Query over Encrypted Data. In
Proceedings of the IEEE Symposium Security and Privacy. (2007)
350-364.

[6] Kim, H.I., Kim, H.J., and Chang, J.W.: A secure kNN query
processing algorithm using homomorphic encryption on outsourced
database. Data and Knowledge Engineering, in press, (2017).

[7] Xue, W., Li, H., Peng, Y., Cui, J., and Shi, Y.: Secure k Nearest
Neighbours Query for High-dimensional Vectors in Outsourced
Environments. IEEE Transactions on Big Data, in press, (2017).

[8] Wong, W.K., Cheung, D.W.L., Kao, B., and Mamoulis, N.: Secure
kNN Computation on Encrypted Databases. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD).
(2009) 139-152.

[9] Zerr, S., Olmedilla, D., Nejdl, W., and Siberski, W.: Zerber+r: Top-k
Retrieval from a Confidential Index. In Proceedings of the 12th
International Conference on Extending Database Technology:
Advances in Database Technology, (2009) 439-449.

[10] Yilmaz, E., Ferhatosmanoglu, H., Ayday, E., and Aksoy, R.C.:
Privacy-Preserving Aggregate Queries for Optimal Location
Selection. IEEE Transactions on Dependable and Secure
Computing, to appear, (2017).

[11] Hidayat, A., Yang, S., Cheema, M.A., and Taniar, D.: Reverse
Approximate Nearest Neighbour Queries. IEEE Transactions on
Knowledge and Data Engineering, 30(2), (2018) 339-352.

[12] Wang, S., Bao, Z., Culpepper, S., Sellis, T., and Cong, G.: Reverse k
Nearest Neighbour Search over Trajectories. IEEE Transactions on
Knowledge and Data Engineering, 30(4), (2017) 757-771.

[13] Zhao, P., Fang, H., Sheng, V.S., Li, Z., Xu, J., Wu, J., and Cui, Z.:
Monochromatic and bichromatic ranked reverse boolean spatial
keyword nearest neighbours search. World Wide Web, 20(1), (2017)
39-59.

[14] Gao, Y., Miao, X., Chen, G., Zheng, B., Cai, D., and Cui, H.: On
efficiently finding reverse k-nearest neighbours over uncertain
graphs. The VLDB Journal, 26(4), (2017) 467-492.

[15] Yang, S., Cheema, M.A., Lin, X., and Wang, W.: Reverse k nearest
neighbours query processing: experiments and analysis. Proceedings
of the VLDB Endowment, 8(5), (2015) 605-616.

[16] Yiu, M., Papadias, D., Mamoulis, N., and Tao, Y.: Reverse nearest
neighbours in large graphs. IEEE Trans. Knowledge and Data
Engineering, 18(4), (2006) 540–553.

[17] Tao, Y., Papadias, D., and Lian, X.: Reverse kNN search in arbitrary
dimensionality. In Proceedings of the 30th International Conference
on Very Large Data Bases (VLDB), (2004) 744-755.

[18] Korn, F., Muthukrishnan, S., and Srivastava, D.: Reverse nearest
neighbour aggregates over data streams. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), (2002)
814–825.

[19] Yang, C., and Lin, K.: An index structure for efficient reverse
nearest neighbour queries. In Proceedings of the 17th International
Conference on Data Engineering (ICDE), (2001) 482–495.

[20] Stanoi, I., Agrawal, D., and Abbadi, A.: Reverse nearest neighbour
queries for dynamic databases. In Proceedings of the SIGMOD
Workshop on Research Issues in Data Mining and Knowledge
Discovery, (2000) 44–53.

[21] Korn, F., and Muthukrishnan, S.: Influence sets based on reverse
nearest neighbour queries. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), (2000) 201–212.

[22] Nanopoulos, A., Theodoridis, Y., and Manolopoulos, Y.: C2P:
clustering based on closest pairs. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB), (2001)
331-340.

[23] Guttman, A.: R-trees: a Dynamic Index Structure for Spatial
Searching, In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). (1984) 47-57.

[24] Bothe, S., Karras, P., and Vlachou, A.: eskyline: Processing skyline
queries over encrypted data. Proceedings of the VLDB Endowment,
6(12), (2013) 1338-1341.

[25] Lin, X., Zhou, L., Chen, P., and Gu, J.: Privacy preserving reverse
nearest-neighbour queries processing on road network. In
Proceedings of the International Conference on Web-Age
Information Management, (2012) 19-28.

[26] Y. Du,: Privacy-Aware RNN Query Processing on Location-Based
Services. In Proceedings of the 8th International Conference on
Mobile Data Management, (2007) 253–257.

[27] Wang, L., Meng, X., Hu, H., and Xu, J.: Bichromatic reverse nearest
neighbour query without information leakage. In Proceedings of the
International Conference on Database Systems for Advanced
Applications (2015) 609-624.

[28] White, D.A., and Jain, R.: Similarity indexing with the SS-tree. In
Proceedings of the 12th IEEE International Conference on Data
Engineering (ICDE), (1996) 516-523.

[29] University of California Irvine - Machine Learning Repository: The
Forest Covertype Dataset, available at:
http://archive.ics.uci.edu/ml/datasets/Covertype, valid as of June
2018.

[30] Kang, J.M., Mokbel, M.F., Shekhar, S., Xia, T., and Zhang, D.:
Continuous evaluation of monochromatic and bichromatic reverse
nearest neighbors. Proceedings of the 23th International Conference
on Data Engineering (ICDE), (2007) 806-815.

http://archive.ics.uci.edu/ml/datasets/Covertype

