
SQL-IDS: A Specification-based Approach for
SQL-Injection Detection

Konstantinos Kemalis and Theodoros Tzouramanis
Department of Information & Communication Systems Engineering,

University of the Aegean,
Karlovassi, Samos, 83200, Greece

Tel.: +30-22730-82253

{kkemalis, ttzouram}@aegean.gr

ABSTRACT
Vulnerabilities in web applications allow malicious users to
obtain unrestricted access to private and confidential information.
SQL injection attacks rank at the top of the list of threats directed
at any database-driven application written for the Web. An
attacker can take advantages of web application programming
security flaws and pass unexpected malicious SQL statements
through a web application for execution by the back-end database.
This paper proposes a novel specification-based methodology for
the detection of exploitations of SQL injection vulnerabilities.
The new approach on the one hand utilizes specifications that
define the intended syntactic structure of SQL queries that are
produced and executed by the web application and on the other
hand monitors the application for executing queries that are in
violation of the specification.

The three most important advantages of the new approach against
existing analogous mechanisms are that, first, it prevents all forms
of SQL injection attacks; second, its effectiveness is independent
of any particular target system, application environment, or
DBMS; and, third, there is no need to modify the source code of
existing web applications to apply the new protection scheme to
them.

We developed a prototype SQL injection detection system (SQL-
IDS) that implements the proposed algorithm. The system
monitors Java-based applications and detects SQL injection
attacks in real time. We report some preliminary experimental
results over several SQL injection attacks that show that the
proposed query-specific detection allows the system to perform
focused analysis at negligible computational overhead without
producing false positives or false negatives. Therefore, the new
approach is very efficient in practice.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Reliability, Validation; D.3.1 [Programming Languages]:
Formal Definitions and Theory – Syntax; F.4.2 [Mathematical

Logic and Formal Languages]: Grammars and Other Rewriting
Systems – Grammar types, Parsing; K.6.5 [Management of
Computing and Information Systems]: Security and Protection
– Unauthorized access.

General Terms
Languages, Security, Verification, Experimentation.

Keywords
Database security, world-wide web, web application security,
SQL injection attacks, specification-based runtime validation.

1. INTRODUCTION
In the recent years, web applications have tended to become
commonplace. Nowadays there is a plethora of web applications
that cover a wide range of daily needs. A large number of
electronic transactions, including e-commerce, e-banking, e-
voting, e-learning, and e-health among others, can be conducted
online at any time and from any place [12]. However, in all these
Internet applications exposed to hacking attempts, security-related
problems are a major issue.

SQL injection represents today the most common indirect attack
technique against web-powered databases and can disassemble
effectively the secrecy, integrity and availability of web applica-
tions. SQL injection occurs when an attacker inserts malicious
SQL code into an SQL query by manipulating data input into an
application. This kind of vulnerability is a serious threat to any
web application that reads input from users and uses it to build
and execute SQL queries to an underlying database. With SQL
injection, the attacker can run arbitrary SQL queries, extracting
sensitive customer and order information from e-commerce appli-
cations, or s/he can bypass strong security mechanisms compro-
mising the back-end databases and the data server file system.

In the face of these threats, a surprisingly high number of systems
on the Internet are entirely vulnerable to such attacks, leaving
even experienced professional programmers unable to cover all
possible SQL injection techniques. Common software that has
been found to be susceptible to SQL injection includes PHPNuke,
vBulletin, WordPress, WBBlog, and literally hundreds of others.
The most famous SQL injection incident that has occurred
probably took place in early 2005 when the CardSystems
Solutions database was found to be compromised [5]. Over a
quarter of a million credit cards numbers were stolen and over ten
million dollars of fraudulent activity were involved in this case.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

2153

username = Request.form("username");
 password = Request.form("password");
 var con = Server.CreateObject(ADODB.Connection");
 var rso = Server.CreateObject(ADODB.Recordset");
 var sql = "SELECT * FROM users
 WHERE username = ' " + username +" ' AND
 password = ' " + password + " ' ";
 rso.open(sql, con);
 if not rso.eof () then
 response.write (“Welcome to the database!”);

In order to perform SQL injection hacking, all an attacker needs is
a web browser and a degree of guess work to find important table
and field database names, which explains why SQL injection is
one of the most common application layer attacks currently being
used on the Internet. An Open Web Application Security Project
Foundation (OWASP Foundation) classification places SQL
injection attacks in the second place on their list of the ten most
critical web application security vulnerabilities [17].

Although there has recently been a great deal of attention devoted
to the problem of SQL injection vulnerabilities [3, 4, 6, 7, 15, 16,
19, 20, 21], many proposed solutions fail to address all types of
SQL injection attacks. Researchers and practitioners are often
unaware of the myriad of different techniques that can be used to
perform SQL injection attacks implying that solutions proposed
protect only from a subset of all possible attacks. In addition,
many of the proposed schemes require a (sometimes extensive)
modification of the web application programming scripts in order
to be able to protect the underlying database.

In this article, we propose a new approach for the prevention of
any form of SQL injection attack. The basic idea of the novel
methodology consists in writing specifications for the web
application that describe the intended structure of SQL statements
that are produced by the application, and in automatically
monitoring the execution of these SQL statements for violations
with respect to these specifications.

Another important feature of the proposed technique rests in the
fact that there is no need to modify the source code of existing
web applications to protect them from SQL injection attacks.
Therefore, this approach is a protection mechanism that is
independent of any particular application environment or DBMS
and it can be deployed without having to perform costly and time-
consuming tuning and configuration.

We also design and implement a prototype defense tool for the
detection of SQL injection attacks, called SQL Injection
Detection System (SQL-IDS). This system implements the
proposed specification-based detection methodology, and it is
applied to counter attacks on Java-based web applications,
although it can straightforwardly be applied to web applications
written in different languages. We report some of our preliminary
experimental results over several SQL injection attacks which
indicate that the new technique is effective, that it involves
negligible runtime overhead and functions completely transparent
to the developer.

This article will unfold along these lines: Section 2, which
follows, describes the way in which SQL can be 'injected' into a
web-powered database. Section 3 describes the proposed
detection methodology for SQL injection attacks. Section 4
describes the design and implementation of a prototype
specification-based detection system. Section 5 discusses issues
related to the evaluation of the proposed scheme. Section 6
reviews related work and, finally, Section 7 concludes and
presents suggestions for further research.

2. SQL INJECTION ATTACKS
SQL injection is a particularly insidious attack since it transcends
all of the good planning that goes into a secure database setup and
allows mistrusted individuals to inject code directly into the
database management system (DBMS) through a vulnerable

application [14]. The basic idea behind this attack is that the
malicious user counterfeits the data that a web application sends
to the database aiming at the modification of the SQL query that
will be executed by the DBMS [18]. This falsification seems
harmless at first glance but it is actually exceptionally vicious.
One of the most worrying aspects of the problem is that
successful SQL injection is very easy to perform, even if the
developers of the web applications are aware of this type of
attack.
The technologies vulnerable to SQL injection attack are dynamic
script languages like ASP, ASP.NET, PHP, JSP, CGI, etc [2].
Let’s imagine, for example, the typical user and password entry
form of a web application that appears in Figure 1. When the user
provides her/his credentials, an ASP (Active Server Page) code
similar to the one that appears in Figure 2 might undertake to
produce the SQL query that will certify the user’s identity.

Figure 1: A typical user authentication form in a web

application.

Figure 2: An ASP code example that manages the users’ login
requests in a database through a web application.

In practice, when the user types a combination of valid login
name and password the application will confirm the elements by
submitting a relative SQL query in some table USERS with two
columns: the column username and the column password. The
most important part of the code of Figure 2 is the line:
sql = "SELECT * FROM users WHERE username = ' " +
username +" ' AND password = ' " + password + " ' ";
The query is sent for execution into the database. The values of
the variables username and password are provided by the user.
For example, if the user types:
username: george
password: 45dc&vg3
the SQL query that is produced is the:
SELECT * FROM users WHERE username = 'george' AND
password = '45dc&vg3';
which means that if this pair of username and password is stored
in the table USERS, the authentication is successful and the user is

2154

inserted in the private area of the web application. If however the
malicious user types in the entry form the following unexpected
values:
username: george
password: anything' OR '1' = '1
then the dynamic SQL query is the:
SELECT * FROM users WHERE username = 'george' AND
password = 'anything' OR '1' = '1';
The expression ‘1’=’1’ is always true for every row in the table,
and a true expression connected with ‘OR’ to another expression
will always return true. Consequently, the database returns all the
tuples of the table USERS. Then, provided that the web
application received, for an answer, certain tuples, it concludes
that the user’s password is ‘anything’ and permits his/her entry. In
the worst case the web application presents on the screen of the
malicious user all the tuples of the table USERS, which is to say
all the usernames with their passwords.
If the malicious user knows the whole or part of the login name of
a user, s/he can log on as he/she, without knowing his/her
password, by entering a username like in the following form:
username: ' OR username LIKE 'admin%'--
password:
The '--' sequence begins a single-line comment in Transact-SQL,
so in a Microsoft SQL Server environment everything after that
point in the query will be ignored. By similar expressions the
malicious user can change a user’s password, drop the USERS
table, create a new database: s/he can effectively do anything s/he
can express as an SQL query that the web application has the
privilege of doing, including running arbitrary commands,
creating and running DLLs within the DBMS process, shutting
down the database server or sending all the data off to some
server out on the Internet.

3. SPECIFICATION-BASED DETECTION
This section proposes a novel methodology to detect exploitations
of SQL injection vulnerabilities in web applications. The new
approach utilizes security specifications that describe the intended
syntactic structure of SQL statements that are produced by the
application. SQL statements that do not conform to the
specifications are considered as security violations and their
execution is blocked.

The detection technique is based on the assumption that injected
SQL commands have differences in their structure with regard to
the expected SQL commands that are built by the scripts of the
web application. Therefore, if the intended structure of the
expected SQL commands has been explicitly pre-determined, it is
possible to detect malicious modifications that alter this structure.

The new methodology consists of a set of phases that should be
followed, so that each SQL statement to be analyzed and checked
in order to make sure that it has not been poisoned via the
injection of malicious code. The phases of the methodology are
described in greater detail below.

Phase 1: Definition of specifications
Of high importance for the proposed technique are the
specifications of the web application. Specifications are a set of

rules that describe the expected structure of SQL statements that
are produced by the application. For each original SQL statement
that is expected to be executed to the back-end database, a rule is
created that defines its syntactic structure.

Phase 2: Interception of SQL statements
The traffic between the web application server and the data server
is filtered and the SQL statements that are sent from the
application are not transmitted directly for execution to the back-
end database. Instead of this, each SQL statement passes through
a validation process that checks it for the potential existence of
SQL injection poisoning attacks. The detection and validation
processes are described in more detail in the following phases.

Phase 3: Lexical analysis
Each intercepted SQL statement initially is recognized as an
arbitrary set of characters. The next phase is to determine the
syntactic units by which the SQL statement is composed. For this
reason, this arbitrary input passes through a lexical analysis
process in which the characters are grouped into tokens (i.e. logic
units) that consist of one or more characters which may represent
key-words of SQL language (eg. SELECT, DELETE, OR, AND),
symbols (eg. +, -, <, <=), constants (eg. 123, 3.1416), variables,
etc..

Phase 4: Syntactical verification of SQL statements
This is the main part of the detection and validation processes.
The sequence of tokens that is produced for each SQL statement
in the previous phase is checked for its syntactical correctness. An
SQL statement is considered to be valid if it does not violate the
syntactical rules that exist in the corresponding specification, as
these have been pre-defined in the first phase of the methodology.

Phase 5: Forwarding valid SQL statements to the
database
If the syntactical validation process confirms that the SQL
statement satisfies the rules of the pre-defined specification (and
thus, it does not contain injected code), the SQL statement is
forwarded to the database server for execution.

Phase 6: Logging
By the completion of the validation process for each SQL
statement, essential information with sufficient detail is audited in
a log file, with the intention to facilitate the administrators’ task
with all the useful information that they need to inspect the
security of the web application. Log files may also help
developers to improve their web application performance and the
effectiveness and the precision of its security on-the-fly, for
example by writing more strictly-defined SQL-statement
specifications.

4. DESIGN AND IMPLEMENTATION
This section presents the design and implementation of a
prototype specification-based detection system, the SQL-Injection
Detection System (SQL-IDS), which is based on the proposed
methodology and in Section 5 it is applied on Java-based web
applications to verify the efficiency of the new methodology. As
was mentioned earlier, the goal of SQL-IDS is to provide a
protection mechanism that is independent of any particular target
system, application environment, or DBMS.

2155

<Query specification> :=
 SELECT <Select List> <From Clause> <Where Clause>

<Select List> :=
 <Table Column> (<COMMA> <Table Column>)*

<From Clause> :=
 FROM <Table reference>

<Where Clause> :=
 WHERE <search condition> AND <search condition>

<search condition> :=
<Table Column> "=" <STRING LITERAL>

Figure 3: The architecture of SQL-IDS.

Figure 3 illustrate the structure of the SQL-IDS prototype. It
consists of three main components which interact with each other.
These three modules are described in the following.

Event Monitoring Module (EMM): It deals with the process of
SQL query interception. Each SQL query that is intercepted is
sent to the Validity Check Module (which will be described next)
to confirm its correctness with respect to the specifications that
have been pre-defined. If the Validity Check Module certifies that
the SQL query does match to the specifications, the EMM
forwards the valid query to the database server to be executed
regularly. In the opposite case, if it is recognized that the SQL
query violates the specifications, then the EMM marks the query
as a potential SQL injection attack, it prevents its execution and
records essential information that concerns the attack, for the
detailed examination and analysis of the attacks by the application
developers. Consequently, the EMM implements the second, the
fifth and the sixth phase of the proposed methodology. For the
development of this module, a proxy JDBC driver is created.

Validity Check Module (VCM): It is responsible for the
comparison of the structure of the SQL query with the intended
structure which is described by the pre-defined specification. If
the query is conformed to the specification, then it is considered
to be valid and a suitable message is sent to the EMM that declare
its correctness. Otherwise, if the SQL query does not match with a
rule of the specification, a conclusion is derived that an SQL
injection attack has modified its structure. In this case, a message
is returned to the EMM that declares the detection of an SQL
injection attack, and the execution of the query is prevented.

The VCM receives the SQL query as a sequence of characters and
utilizes a lexical analyzer and a parser, implementing respectively
for the third and fourth phase of the proposed methodology, in
order to decode this sequence of characters, to recognize the
structure of the SQL query and to examine the syntactic
correctness of its structure. The VCM is implemented using
JavaCC (Java Compiler Compiler) [13], which is a popular lexical
analyzer generator and parser generator for Java language.

Specifications: A critical component of the system is the SQL
statements' specifications of the web application. Via the
specifications, rules are defined that describe the expected
syntactic structure that an SQL query should follow in order to be
considered valid. The main characteristic of the specifications is

completeness, which means that they should include explicit rules
for each statement that is expected to be executed according to the
source code of the application, while each rule should cover all
likely values that the SQL statement may have. If the
specifications present any lack or errors, false positives or false
negatives may be introduced. The syntax of the specifications
needs to follow the Extended Backus-Naur Form (EBNF) notation
[22], a metasyntax notation which is used widely to express
context-free grammars. Specifications for SQL language
standards [8, 9, 10] can be easily created based on syntactical
rules that are analytically specified in EBNF grammar.

Consider for example the following SQL statement:

SELECT user_id, user_level
FROM USERS
WHERE username = 'george' AND password = '45dc&vg3';
Figure 4 shows the specification for this statement. The rules of
this specification indicate the legitimate sequences of token kinds
in an attack free input.

Figure 4: An example of SQL statement specification.

5. EVALUATION
In the following the results obtained from the experimental
evaluation of SQL-IDS are presented and discussed. The
benchmarking environment is constituted by an AMD Athlon
1GHz, with 256 MB RAM and Microsoft Windows 2000. The
server has been configured by Apache Tomcat (ver. 5.5.23) and
Microsoft SQL Server 2000.

The evaluation of SQL-IDS is based on three criteria: the
performance; the effectiveness; and the precision of the
implemented system.

5.1 Performance
We measured the performance of the SQL-IDS in terms of time
overhead that is introduced into the database query execution cost
by the new protection technique. For the measurement, a set of
2,450 SQL queries was sent to the data server through a sample
book store web application, 420 of which were poisoned with
SQL injection attacks and 2,030 were attack free SQL statements.

In the experiments, it was discovered that the performance
penalty that was introduced in the operation of the web
application ranges from about 0 to 20 milliseconds per SQL
query. The average time overhead is estimated to be less than one
millisecond per query. Since the average response time for most
web applications is usually a few seconds, depending on the
purpose of the application, the time overhead that is introduced

2156

contributes insignificantly into the query execution, cost in the
majority of the cases.

Table 1: Performance results.

SQL
Queries

min time
overhead

max time
overhead

average
time

overhead

2,450 ∼ 0 ms 20 ms 0.5 ms

5.2 Effectiveness
The number of false negatives is critical for the level of
effectiveness of the detection system. For the measurement of
effectiveness an attempt was made to send to the database the set
of 420 attack scenarios that was prepared in the previous
experiment. Table 2 summarizes the result of the attacks. It
appeared that SQL-IDS manage to detect all the attempts of attack
that were injected through the application.

We have to notice that all these attacks were detected by SQL-
IDS without encoding any attack-specific information into the
specifications. In other words, all these attacks were “unknown”
to the detection system. The non-existence of false negatives
supports the claim that the proposed specification-based approach
can be effective for the detection of novel attack vectors.

Table 2: Effectiveness results.

Attacks
Performed

Attacks
Detected

False Negative
Rate

420 420 0 %

5.3 Precision
To make SQL-IDS reliable, the probability of falsely recognizing
a valid query as an attack must be low. Precision measures the
false positive rate.

To evaluate the system's precision, the set of 2,030 attack free
SQL queries that was produced in the first experiment was used.
As Table 3 indicates, no false alarms were reported by the new
system.

Table 3: Precision results.

Attack Free
SQL Queries

Attacks
Detected

False Positive
Rate

2,030 0 0 %

6. RELATED WORK
Various techniques have been proposed for the confrontation of
the threat of SQL injection attacks. In this section, the
characteristics of the best known techniques are briefly discussed
and their principal weaknesses are highlighted.

6.1 Static analysis
Wassermann and Su [21] propose a static analysis framework to
filter user inputs. According to them, their approach has some
limitations concerning implementation-related issues, such as the
way it handles some operators. Additionally, this approach is

limited to discover only tautology-based attacks, i.e. attacks that
always result in true or false SQL statements.

Another static analysis approach has been proposed by Livshits
and Lam [15]. In this work, vulnerability patterns are described in
a program query language called PQL. Static analysis is applied
to find potential violations matching a vulnerability pattern. The
main limitation of the method is that it cannot detect SQL
injection attacks patterns that are not known beforehand, and
explicitly described in the specifications.

In Huang et al. [7], preconditions are specified for all sensitive
PHP functions and user input is checked against these
preconditions. Like all static analysis approaches, their
WebSSARI technique does not provide an automated mechanism
for detection and prevention of SQL injection attacks. This is the
most important reason why all the approaches of this subsection
generate a significant number of false negatives.

6.2 Dynamic analysis
AMNESIA [6] uses a model-based approach to detect illegal
queries before their execution into the database. In its static part,
the technique uses program analysis to automatically build a
model of the legitimate queries that could be generated by the
application. In its dynamic part, the technique uses runtime
monitoring to inspect the dynamically-generated queries and
check them against the statically-built model. A primary
assumption regarding the applications which the method targets is
that the application developer creates queries by combining hard-
coded strings and variables using operations such as
concatenation, appending and insertion. The main drawback of
AMNESIA is that it requires the modification of the web
application’s source code for the successful collaboration with the
security monitor officer.

SQLGuard [4] is based on comparing, at run time, the parse tree
of the SQL statement before the inclusion of the user input with
that resulting from parse tree of the SQL statement after the
inclusion of the user input. A secret key is used for wrapping the
user input, so if an attacker compromises this key, SQLGuard is
difficult to prevent an attack. According to [4], the overhead to
database query costs is about 3 msec (the characteristics of their
server were very similar to ours: a 733MHz Windows 2000
Server machine with 256MB RAM). Another drawback of their
method is that, similarly to AMNESIA, it requires the
modification of the application's scripts.
SQLCheck [19] is a similar approach. It adds a key at the
beginning and at the end of each user’s input. At runtime, the
“augmented” queries that are not in a valid syntactic form are
considered attacks. The detection ability of the approach depends
on the strength of the key also.

Nguyen-Tuong et al. [16] proposes a technique that is based on
precisely tracking taintedness of data and checking for dangerous
content. This technique requires also the modification of the
execution environment.

Valeur et al. [20] developed an anomaly-based detection system
that learns the profiles of the expected database access performed
by web-based applications using a number of different models.
Anomalous behaviour is characterized attack. However, this
system and every anomaly-based detection system present a high
rate of false alarms.

2157

In SQLrand [3], the SQL standard keywords are manipulated by
appending a random integer to them that an attacker cannot easily
guess. Therefore, any malicious user attempting an SQL injection
attack would be thwarted. This technique uses a key to randomize
SQL queries, so if an attacker compromises this key, SQLrand is
difficult to prevent an attack.

7. CONCLUSIONS AND FUTURE WORK
This article presents a novel methodology for the detection of
SQL injection attacks. According to the approach, a specification
describes the intended structure of the SQL queries that are
produced by the web application. An SQL query is considered a
security violation if it does not conform to the pre-defined query-
specification rules.

We develop a prototype detection system that monitors Java-ba-
sed applications to detect exploitations of SQL injection vulnera-
bilities. The detection system does not demand any change to the
web application or the database schema. Our preliminary experi-
mental results indicate that the new, automated protection solution
is very effective and efficient in detecting SQL injection attacks.

In the future, we plan to carry out more experiments to verify that
-as it might be expected- the behavior of the new method is not
affected by the application scenario and characteristics. An issue
that also requires extensive future research is the comparison of
the proposed method against existing detection methods under a
common and flexible benchmarking environment.

Finally, attempts should be made to modulate the proposed
technique so that it might detect other types of code injection
attacks and other types of attacks that offend web applications and
on-line databases, such as cross-site scripting (XSS) attacks [11].

8. REFERENCES
[1] C. Andrews, D. Litchfield, B. Grindlay and NGS Software:

SQL Server Security, McGraw-Hill/Osborne, 2003.
[2] V. Anupam and A. Mayer: “Security of Web Browser

Scripting Languages: Vulnerabilities, Attacks, and
Remedies”, In Proceedings of the 7th USENIX Security
Symposium, pp. 187-200, 1998.

[3] S. Boyd and A. Keromytis: “SQLrand: Preventing SQL
Injection Attacks”, In Proceeding of the 2nd International
Conference on Applied Cryptography and Network Security,
China, June 2004.

[4] G. Buehrer, B. Weide, and P. Sivilotti: “Using Parse Tree
Validation to Prevent SQL Injection Attacks”, In Proce-
edings of the 5th International Workshop on Software Engi-
neering and Middleware, Lisbon, Portugal, September 2005.

[5] E. Dash: “Lost Credit Data Improperly Kept, Company
Admits”, The New York Times, June 20, 2005.

[6] W. Halfond and A. Orso: “AMNESIA: Analysis and
Monitoring for NEutralizing SQL Injection Attacks”, In
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, Long
Beach, California, November 2005.

[7] Y.W. Huang, F. Yu, C. Hang, C.H. Tsai, D. T. Lee, S.Y.
Kuo: “Securing Web Application Code by Static Analysis
and Runtime Protection”, In Proceedings of the 13th

international conference on World Wide Web, New York,
USA, May 2004.

[8] ISO/IEC: “Information Technology - Database Language
SQL”, July 1992.

[9] ISO/IEC: “Information Technology - Database Languages -
SQL - Part 2: Foundation (SQL/Foundation)”, September
1999.

[10] ISO/IEC: “Information technology - Database Languages -
SQL - Part 2: Foundation (SQL/Foundation)”, August 2003.

[11] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic: “Noxes: a
client-side solution for mitigating cross-site scripting
attacks”, In Proceedings of the ACM Symposium on Applied
Computing, pp.330-337, 2006.

[12] M. Khosrow-Pour (ed.): Encyclopedia of E-Commerce, E-
Government, and Mobile Commerce, Idea Group Reference,
2006.

[13] V. Kodaganallur: “Incorporating Language Processing into
Java Applications: A JavaCC Tutorial”, IEEE Software,
Volume 21, Issue 4, pp 70-77, July-Aug. 2004.

[14] D. Litchfield: “Web Application Disassembly with ODBC
Error Messages”, 2001. Address for download: http://
www. nextgenss.com/papers/webappdis.doc

[15] B. Livshits and M. Lam: “Finding Security Errors in Java
Programs with Static Analysis”, In Proceedings of the 14th
Usenix Security Symposium, Baltimore, USA, Aug. 2005.

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D.
Evans: “Automatically Hardening Web Applications Using
Precise Tainting”, In Proceedings of the 20th IFIP Internat-
ional Information Security Conference, Chiba, Japan, 2005.

[17] Open Web Application Security Project Foundation
(OWASP Foundation): “The Ten Most Critical Web
Application Security Vulnerabilities - 2007 Update”, 2007.
Address for download: http://www.owasp.org/ima-
ges/c/c7/OWASP_Top_10_2007_RC1.pdf

[18] K. Spett: “SQL Injection: Is Your Web Applications
Vulnerable?”, Technical Report, SPI Dynamics Inc., 2002.

[19] Z. Su and G. Wassermann: “The Essence of Command
Injection Attacks in Web Applications”, In Proceedings of
the 33rd Symposium on Principles of Programming
Languages, Charleston, South Carolina, January 2006.

[20] F. Valeur, D. Mutz, and G. Vigna: “A Learning-Based
Approach to the Detection of SQL Attacks”, In Proceedings
of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, Vienna, Austria, July 2005.

[21] G. Wassermann and Z. Su: “An Analysis Framework for
Security in Web Applications”, In Proceedings of the
Specification and Verification of Component-Based Systems
Workshop, Newport Beach, California, October 2004.

[22] N. Wirth: “What can we do about the unnecessary diversity
of notation for syntactic definitions? ”, Communications of
the ACM, Vol. 20, Issue 11, pp. 822-823, November 1977.
Address for download the International standard (ISO 14977)
that defines the EBNF: http://standards.iso.org
/ittf/PubliclyAvailableStandards/s026153_
ISO_IEC_14977_1996(E).zip

2158

