
History-independence: A fresh look at the case of R-trees
Theodoros Tzouramanis

Department of Information & Communication Systems Engineering,

University of the Aegean,

Karlovassi, Samos, 83200, Greece

ttzouram@aegean.gr

ABSTRACT

The deterministic tree-based database indexing structures

unintentionally retain "additional" information about previous

operations records of the index itself and about the database users'

past activities. Privacy is jeopardized when a user gains

illegitimate access to an indexing structure and accesses this

"additional" confidential information from the internal

representation of the index. This paper is the first to explore the

design of history-independent access methods for spatial and

multidimensional databases and proposes the History-Independent

R-tree (HIR-tree), an R-tree variant which does not reveal

information about the sequence of insertions, deletions and

updates that have been applied to it and only reveals the outcome

of these historical operations. It differs from the traditional spatial

access methods in that the HIR-tree has the additional property of

hiding its modification history. This property is achieved through

the use of randomization by the update algorithms.

Categories and Subject Descriptors

H.2.2 [Database Management]: Physical Design – Access

methods. H.2.8 [Database Management]: Database Applications

- Spatial databases and GIS. K.4.1 [Computers and Society]:

Public Policy Issues – Privacy.

General Terms

Algorithms, Performance, Design, Security.

Keywords

Algorithms, privacy, spatial and multidimensional databases,

history-independence, access methods, R-tree.

1. INTRODUCTION

Electronic information, assumed erased, re-surfaces: Where high

security and privacy protection are required, information that

cannot be retrieved via the legitimate interface of a system (e.g.,

what is visible on screen), should not be retrievable by any

means. A simple illustration is a database indexing structure with

lazy deletions that retains information believed to be long deleted:

if this information is not part of the interface, the index should

hermetically secure it in its internal representation and disclose

nothing about the allocation in the data server memory.

This work focuses on indexing methods that are history-

independent, i.e. it is impossible from the internal representation

of the index to deduce any information not revealed by its current

state. Indexing methods are considered to support insert, delete,

update and search operations. Here, the only history not contained

in the current state is the order of insertions, deletions and updates

that have led to this state.

Providing history-independence to an indexing method is an

interesting and intuitive problem from the point of view of

research. Examples of application could be :(1) an indexing

method used for storing the voting records in a paperless

electronic voting system, (2) a spatial indexing method used in a

computer-aid design (CAD) application to store the layout data of

a newly designed complex system as with the Formula One

Scandal in 2007 [15], (3) a spatial indexing method used in a

military application to store military installations regional

locations: In all three cases, the contents of the storage system

should not reveal the order in which the objects of an operation

were entered, be it the order in which the ballots were cast, the

steps of a design process or the order of the locations of the

military installation.

A large body of research aims to make data structures and access

methods persistent [4], in order to make it possible to reconstruct

previous states of the data structure from the current one [14].

This paper aims at the very opposite, i.e. to ensure that strictly no

information can be deduced about the past. Hence an alternative

name for history-independence is anti-persistence [13].

The paper explores the question of history-independence in

multidimensional and spatial databases and proposes an anti-

persistent indexing method for privacy preserving spatial database

applications. Section 2 reviews related work. Section 3,

formulates the problem and presents the relevant terminology.

The History-Independent R-tree is defined and described in

Section 4. Section 5 concludes and looks ahead to possible

extensions to this work.

2. RELATED WORK

While this property can be incorporated in other tree-based spatial

access methods as well, the present work introduces a method for

efficiently incorporating history independence in R-trees [6]. The

R-tree was chosen because it is the most popular of access

methods for indexing spatial databases. Figure 1 shows an

example set of four rectangles and two possible R-tree

representations of these rectangles.

x

y

Ο

a

b

c d R3

R2

R1

root

node R1

R2 R3

a b c d

node R2 node R3

root

node R1

a b c d

 (a) (b) (c)

Figure 1. (a) some data objects, and (b) & (c) two possible R-tree

representations for these objects.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’12, March 25-29, 2012, Riva del Garda, Italy.

Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

7

 f g h

h

x

 y

e
b

Ο

d

g

c

f

R1

R2

R1 R2

 a b c d e

a

 f g h

h

x

 y

e
b

Ο

d

g

c

f

R1

R2

R1 R2

 b c d e

 (a) (b)

 e g h

h

x

 y

e
b

Ο

d

g

c

a

R1 R2

R1

R2

 a b c d

 e f g

x

 y

e
b

Ο

d

g

c

f

a

R1 R2

R1

R2

 a b c d

 (c) (d)

Figure 2. (a) an R-tree storing some points, (b) the R-tree prior to the last

insertion, assuming that the last point to be inserted is any of those in the

group {a, b, c, d} (the figure assumes that the last point to be inserted is

point a however the case of points b, c and d does not differ), (c) the R-

tree before the last insertion assuming that the last point to be inserted is

any of those in the group {e, f}, (d) the R-tree before the last insertion

assuming that the last point to be inserted is any of those in {g, h}.

The simplicity and excellent performance of the R-tree have led

to many variations being developed. They differ mainly in their

splitting strategies. We focus on one of these variations, the

Hilbert-R-tree [9] which uses space-filling curves, and

specifically the Hilbert curve, to impose a linear ordering on the

spatial data objects. Given the ordering, every node has a well-

defined set of sibling nodes; thus, deferred splitting can be used,

unlike most of the other R-tree designs (including [6]).

The structure of the R-tree (and, to the best of the author's

knowledge, the structure of all R-tree variants, including the

Hilbert R-tree) does not have a unique memory representation for

the same dataset. Moreover, this representation depends on the

order in which the data were inserted, deleted and updated into

the tree. Therefore, the R-tree is a history-dependent indexing

method and a malicious user (henceforth called “the observer”),

by observing its internal representation, might be able to infer

restricted-access information regarding the sequence of insertions,

deletions or updates that have been applied to it. For instance, let

us assume that the R-tree of Figure 1b has a minimum//maximum

node capacity of 2//4 rectangles and that an observer gains access

to the memory representation of the tree. The observer may then

conclude with absolute certainty that at least one more item had

been inserted into the tree at an earlier time that was deleted

subsequently, before the observer gained access to the index,

because if only insertions had been performed until now then the

R-tree should have one leaf only: the R-tree in the state illustrated

in Figure 1b should consequently not be accessible information.

It is not the case that the information disclosure regarding the

history of insertions and deletions into the R-tree decreases as the

maximum node capacity increases because the larger the tree

becomes, the more opportunities the observer may have for

investigation, by examining groups of nodes of the tree that have

spatial proximity. See Figure 2a: assuming that deletions are not

permitted and that the minimum//maximum R-tree node capacity

is 3//6 points, the observer might infer that one of the points in the

group {a, b, c, d} was the last point that was inserted into the R-

tree, having noted that if the object inserted last into the R-tree

was any point from the group {e, f} (or from the group {g, h}),

then the R-tree memory representation before that last object

insertion would have been the one in Figure 2c (or, respectively,

in Figure 2d), therefore the R-tree in its final representation would

store four objects in each leaf.

Micciancio first dealt with history-independence explicitly, and

[11] studied the efficient incorporation of history-independence in

the context of main-memory 2-3 trees. Micciancio realized that

the structure of the tree gives away information about the order in

which nodes have been inserted. To secure the privacy of the

sequence of the modification operations, he proposed the

Oblivious Tree, very similar to the main-memory 2-3 Tree, but

history-independent. Insert and delete are defined as randomized

algorithms; when a leaf is inserted or deleted, the Oblivious Tree

makes local changes to the topology of the tree, based on the

outcomes of a sequence of coin tosses.

History independence can also be derived from data structures

that have a canonical or unique representation [13]. To this end,

history independence means that if multiple updates occur

between two adjacent snapshots, an observer learns nothing as to

the order in which the updates occurred and the data server learns

nothing if it receives the updates as a batch. In addition, it must

not be possible for an observer to learn anything about the keys in

one snapshot, given query responses from any other snapshots. In

this context, the ordered hashing algorithm of [1] has the unique

representation property. Also, Blelloch and Golovin [2] described

a history-independent hash table for main memory, supporting

insertions, deletions and queries in expected constant time and

linear space, while, Naor et al. [12] developed a history-

independent dynamic perfect hashing table supporting deletions,

based on cuckoo hashing. Finally, Blelloch et al. [3] developed

efficient history-independent data structures for problems in

computational geometry and Golovin [5] proposed B-treap, a

demonstrably uniquely-represented B-tree with guaranteed strong

performance in its operation, but significantly complicated and

difficult to implement.

This present work introduces a spatial access method the current

memory representation of which does not reveal its history, and

therefore does not reveal information about the sequence of

insertions, deletions and updates that have been applied to it, and

only reveals the final result of this sequence of historical

operations. The proposed method is called History-Independent

R-tree (HIR-tree) and is similar to the traditional R-tree and

especially to the Hilbert R-tree, with the additional property that

the only information conveyed by its structure is the set of

rectangles stored in its leaves. This property is achieved through

the use of randomization by the update algorithms.

8

http://en.wikipedia.org/wiki/Space-filling_curve
http://en.wikipedia.org/wiki/Hilbert_curve

3. PROBLEM FORMULATION AND

DEFINITIONS

An indexing structure's state comprises of the contents of the

indexing structure at a specific time point. A possible memory

representation of an indexing structure for any given state is the

physical contents of memory that represent that state. For the sake

of convenience, we shall view a state as the set of memory

representations that may represent that state. For example,

considering the set of the four spatial objects of Figure 1a, we

may, in Figures 1b and 1c, see two possible memory

representations of the current state of an R-tree storing them: the

first representation of the R-tree consists of two leaves and a root

and the second one consists of a single leaf which is also the root

of the tree.

An indexing structure is built from a list of operations, i.e., a list

of insertion, deletions and updates. We assume that each

operation takes one state deterministically to another state. Next

we define the state transition graph based on a similar work on

main-memory data structures [7]:

Definition 1 (State Transition Graph): The state transition

graph of an indexing structure is the directed graph induced on

states (as vertices) of the indexing structure by the operations

(directed labelled edges).

The path on the graph that leads from a state S1 to another state

S2 represents the sequence of operations that were performed on

the structure from the state S1 to the state S2. It is obvious that if

the indexing structure does not support deletions and updates then

the graph will be acyclic (a DAG), i.e., it will not be possible to

return to a state once visited. On the other hand, if the indexing

structure supports deletions and updates then the graph will be

strongly connected, i.e., all states will be reachable equally by one

another.

On the basis of the above, starting from initialization (i.e., from an

empty index), each state on the graph is reachable through at least

one path that corresponds to a unique possible sequence of

operations. Also, each of these states may have more than one

possible memory representation. The goal of history-

independence is to make the indexing structure's evolution in time

to depend only on the state (i.e. on the contents) of the indexing

structure and not on the memory representation (i.e. not on the

path on the transition graph that led to this content). For example,

let us consider that there is a period of activity in an indexing

structure (e.g. insertions, deletions and updates). At some point

the observer gains control of the structure, i.e. sees exactly what is

in the memory representing it. The observer should not be able to

deduce any more about the sequence of operations that led to the

content than is yielded by the content itself.

Therefore, a practical way of making an indexing structure

history-independent is to introduce secret randomness into an

indexing structure in such a manner that if an observer is not

aware of the random choices then she cannot infer anything about

the modification history. Take, for example, a geographic map

storage mechanism for the storage of the current positions of

military forces: history-independence through the use of

randomization prevents the contents of the system from revealing

information about the order in which the forces were moved

across and only reveals the final position of the forces on the map

(analogously to a paper-printed result).

The definition of the history-independent indexing structure

therefore is:

Definition 2 (History-Independent Indexing Structure): An

indexing structure is history-independent if for any two sequences

of modification operations X and Y that take the indexing

structure from initialization  to a state S, the distribution over

memory representation after X is performed is identical to the

distribution after Y. That is, if we compare the cases 
XS

and 
YS we will have: ∀ s  S, P(

X s) =

P(
Ys), where s denotes a possible memory representation

of state S and P(
X s) denotes the probability that, starting

from representation , the sequence X of operations on the data

structure yields representation s of S.

We have to note that a memory representation s1 is reachable

from another representation s2, denoted as s1s2 if there is at

least one sequence of operations X such that P(s1
X s2)  0. In

the following sections we will use randomization to construct and

prove the validity of a history-independent R-tree variant.

4. THE HISTORY-INDEPENDENT R-TREE

The HIR-tree is a height-balanced tree that consists of

intermediate and leaf nodes the layout of which is similar to that

of the Hilbert R-tree. The HIR-tree description is as follows:

– Every node contains between b and B entries unless it is the

rightmost node on its level or the root.

– Every rightmost node on a level (the root node, respectively)

has at least one child node (two child nodes, respectively),

unless it is a leaf.

– For each leaf entry <o_id, R>, R is the minimum bounding

rectangle (MBR) approximation of the spatial object

represented by object identifier o_id.

– For each non-leaf entry <ptr, R, LHV>, ptr is a pointer to a

child node, R is the MBR that completely encloses the

rectangles in that descendant node and LHV is the largest

Hilbert value among the rectangles in the descendant node.

– The Hilbert value that represents every rectangle into the tree

is the Hilbert value of its centre.

– All leaves appear at the same level.

The Hilbert R-tree was chosen because of its well defined set of

sibling nodes for every node in the tree (a unique property in

relation to most of the other R-tree designs).

x

 y

Ο

d g

j R6

R4

a
b

c

e

f

h

b

i R3 R5

R1

R2

R1 R2

R6

c

b a e

d h i g f j

R5
 R4 R3

 (a) (b)

Figure 3. (a) a set of ten multidimensional objects, and, (b) the HIR-tree

built on top of these objects.

9

The description of the HIR-tree differs from the Hilbert R-tree

because the minimum node capacity on the Hilbert R-tree is fixed

to B/2 records and because the nodes along the rightmost path

of the HIR-tree are permitted one entry only. This is not essential

to the indexing structure but it helps with simplifying the

description of the modification operation algorithms. As an

example of the tree, Figure 3 illustrates several MBRs and the

corresponding HIR-tree built on top of these rectangles, assuming

a minimum//maximum node capacity of 2//4 records.

In order to insert a new object e into the HIR-tree, we start by

calculating the Hilbert value of the center of the MBR of e and we

traverse the tree in a B-tree manner, i.e., by starting from the root

tree node and by choosing the proper child based on the stored

LHV values. When a leaf node is reached, e is inserted into the

leaf and the MBRs of all its descendent nodes are enlarged

properly in order to completely cover e. After the insertion of e,

the target leaf will store between b and B entries. However, the

final number of entries into the leaf will be chosen by the random

outcome of a coin toss, in order to achieve history independence.

For the processing of a point or range query with respect to a

query window q (which could be either a point or a rectangle), the

R-tree traversal policy is followed. More precisely, by starting

from the root node, all the tree nodes with MBR overlapping the

query window q are traversed in an umbrella-like top-to-bottom

fashion. When the leaf level is reached, all the data rectangles that

overlap the query window q have to be reported to the user.

Operation Description

Create(N) builds a new tree storing a sequence N of n spatial

objects at its leaves

Insert(ob, T) inserts a new spatial object ob in the tree T

Delete(ob, T) removes the spatial object ob from the tree T

Update(ob, T) updates the spatial object ob from its old value obold

to its new one obnew in the tree T

Search(q, T) performs a range query with respect to a given query

window q, in the tree T

Table 1. The set of operations that act over HIR-tree.

Before going further into the description of the modification

algorithms that operate the HIR-tree, on the basis of Definition 2

we formalize the requirement for this tree-based access method to

be history-independent.

Definition 3 (Requirement for achieving History-

Independence [11]): Let M be a set of operations that act over a

HIR-tree, and A be a set of algorithms implementing them. The set

of algorithms A is history-independent if for any two sequences of

operations p1, p2, ..., pn and q1, q2, ..., qm the following is true.

If p1, p2, ..., pn and q1, q2, ..., qm generate trees storing the same

set of rectangles, then the execution of the sequence of algorithms

in A implementing p1, p2, ..., pn and the execution of those

implementing q1, q2, ..., qm have identical output probability

distributions.

Table 1 lists the set of operations investigated by the author in a

HIR-tree. The algorithms implementing these operations are

probabilistic with the exception of the Search() operation which

acts similarly to the original R-tree and for this reason it will be

omitted in the sequel1. The tree T is generated firstly by running

Create(N) with a sequence N of n objects (possibly with n = 0)

and successively by applying a sequence of modification ope-

rations Insert(ob, T), Delete(ob, T) and Update(ob, T), where ob

represents a given spatial object. The Create(N) and Insert(ob, T)

algorithms are defined below, while the Delete(ob, T) and

Update(ob, T) algorithms are omitted due to space limitation.

However, the Delete(ob, T) operation is analogous to Insert(ob, T)

and the Update(ob, T) operation can be implemented by a deletion

Delete(ob, T) of a data entry followed by an insertion Insert(ob,

T) of a new entry with the same object identifier o_id = ob.

4.1 The Create Operation

Given a sequence N of n objects, the Create(N) operation builds

the HIR-tree in a bottom-up bulk-loading fashion, level by level,

starting from the leaves of the tree. The bulk-loading strategy is

based on the packing technique proposed in [8] which supports

the pre-ordering of the input data based on the Hilbert value of the

centre of the data rectangles. Algorithm 1 illustrates the pseudo

code for the randomised Create(N) operation for the HIR-tree,

considering a pre-sorted set N of n spatial objects.

Algorithm 1: the Create() operation

Input: a presorted list N of n records in the

form: <MBR of an object, Hilbert value

of the MBR, Address of the object>.

The list is sorted in ascending order

based on the Hilbert value.

Output: the HIR-tree T

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

BEGIN

REPEAT {

 Nupper = ;

 // Nupper is a temporary list with

 // similar description to list N

 WHILE N <>  DO {

 Choose a random integer d  [b, B];

 IF size(N) < d THEN

 //size(N) returns the num of objs in N

 Set d := size(N);

 Create a new tree node p and insert into

 p the d leftmost records of N; Remove

 these d records from N;

 Insert in Nupper the triplet

 <MBR(p), LHV(p), Address(p)>;

 //Address(p) is the address of p on disk

 }

 N := Nupper;

}

UNTIL Nupper  1;

RETURN Address(p); // p is now the new root

Algorithm 1. Pseudo code for the Create(N) operation, where N

represents a list of spatial objects.

1 A pseudo code for processing a range query with respect to a window q can

be found in the original paper of the R-tree [6] as no modification is re-

quired. Regarding other popular spatial queries like the k-nearest-neighbor,

similarity, skyline queries, spatial joins of various kinds, etc., the proposed

method supports all the original algorithms that act on the R-tree [10].

10

Assuming a minimum//maximum R-tree node capacity of 2//4

entries and assuming that the outcomes of the coin tossing

d {2, 4} are 3, 2, 4, 2, 3, 2 and 4, the execution of Create()

algorithm on the set of objects {a, b, ..., i, j} of Figure 3a

generates the tree shown in Figure 3b (the first four coin tossing

outcomes are spent for the grouping of the entries at the leaf level,

the next two outcomes for the next higher level, etc.).

4.2 The Insert Operation

The execution of the insertion algorithm Insert(ob, Create(N)) for

any sequence N of n objects and a new object ob must obtain the

same output distribution as of Create(N'), where N' is the

sequence obtained from N by adding into it the object ob.

Insert(ob, T) is illustrated in Algorithm blocks 2-4.

Algorithm 2: the Insert() operation, Part I

Input: a new spatial object ob to be inser-

ted into the HIR-tree with root p.

Output: the HIR-tree T

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

18:

26:

27:

28:

29:

30:

31:

32:

33:

L = Lupper = ;

// The lists L and Lupper contain "signed"

// entries of the form:

//<+/-,MBR(p),Hilbert(p),Address(p)>

Insert into L the triplet:

 <+, MBR(ob), Hilbert(ob), Address(ob)>;

Traverse the tree and locate the leaf uh

 in level h in which the new object

 ob will be inserted;

Keep in main memory all the nodes

 u(0), u(1), ..., u(h-1), u(h) in the

 path from the root u(0) to the leaf

 u(h);

REPEAT {

 Lupper = ;

 p := u(h);

 TransferDataFromNode2List(L, Lupper, p);

 WHILE L <>  DO {

 Choose a random integer d  [b, B];

//d is selected to be the new degree of u(h);

 Algorithm 3;

 Algorithm 4;

 }

 L := Lupper;

 h--;

}

UNTIL Lupper  1 or h < 0;

IF Lupper > 1 THEN

 //the tree's height needs to be increased

 p := Create(L);

RETURN Address(p); // p is now the new root

Algorithm 2. Pseudo code for the Insert(ob, T) operation, where ob is a

new spatial object and T is a HIR-tree.

The algorithm makes use of two lists L and Lupper which are both

sorted in ascending order based on the Hilbert value. The lists

contain "signed" entries of the form <+, MBR(p), Hilbert(p),

Address(p)> and <–, (MBR(p), Hilbert(p), Address(p)>, where p

is an object or a tree node. A list entry marked by the sign '+' ('–')

is to be inserted into (deleted from) the tree in the corresponding

level. The list L (Lupper) is used to store tree entries of the level

currently under process (of the next upper tree level).

The algorithm also makes use of two auxiliary procedures, the

TransferDataFromNode2List and TransferDataFromList2ANode.

The first one transfers all the elements of a node p into list L all

marked with the sign '+'. At the same time the triplet <–, MBR(p),

LHV(p), Address(p)> is inserted into list Lupper and node p is era-

sed by overwriting it with random bits 0 and 1. This may be signi-

ficant since the disk might leak undesirable information. The se-

cond procedure, named TransferDataFromList2ANode, transfers

entries from list L into a new node p while at the same time the

triplet <+, MBR(p), LHV(p), Address(p)> is inserted in list Lupper.

It has to be noted that if two identical triplets with different signs

+/– co-appear in a list, then they are both removed from the list.

At the beginning of the Insert(ob, N) algorithm the new spatial

object ob is inserted into list L. Then, after locating the

appropriate leaf p to host the new object ob, its entries are

transferred into lists L and Lupper (Line 8). Then by using a new

coin toss the algorithm decides which will be the number of

records that p will host (Line 10). There are two possible cases to

distinguish in what follows: if p is the rightmost node in its level

then Algorithm 3 is executed, otherwise, Algorithm 4 is executed.

Algorithm 3: the Insert() operation, Part II

11:

12:

13:

14:

15:

16:

17:

 IF p is the rightmost node at

 level h THEN {

 IF size(L) < d THEN

 Set d := size(L);

 TransferDataFromList2ANode(L,

 Lupper, d);

 IF size(L) > 0

 TransferDataFromList2ANode(L,

 Lupper, size(L));

// i.e. a new node will be created to be

// the new rightmost node on this level

 }

Algorithm 3. Pseudo code for the Insert(ob, T) operation, Part II.

In Algorithm 3, if the new value d is larger than the number of

records that list L hosts, then d is set to be equal to the number of

entries in L. At the end of the operation, list L is emptied into at

most two sibling tree nodes (Lines 14-16) which will be the new

rightmost nodes in the level under process.

Algorithm 4: the Insert() operation, Part III

18:

19:

20:

21:

22:

23:

24:

25:

 ELSE IF p is not the rightmost

 node at level h {

 WHILE size(L) < d THEN {

 Locate the right sibling node p'

 of p at level h;

 TransferDataFromNode2List(L,

 Lupper, p');

 p := p';

 }

 TransferDataFromList2ANode(L,

 Lupper, d);

 }

Algorithm 4. Pseudo code for the Insert(ob, T) operation, Part III.

11

In Algorithm 4, if the new number of records that it was decided

would be hosted by p is larger than the number of records that list

L hosts, then at most two right sibling nodes p' of p are located

and their entries are transferred into list L (Line 21). At the end of

the algorithm, a new tree node is created and the d entries of L

with the smaller Hilbert value are transferred into the new node.

The Insert(ob, T) algorithm continues by locating sibling nodes on

the same level to p from left to right (by executing Algorithm 4)

until no more records remain in L or until we reach the rightmost

node of the tree for the level under process (Algorithm 3 is then

executed). At this point the 'while' loop in Lines 9-26 exits and the

algorithm starts the same process for the next upper level moving

in a bottom-up level-by-level fashion (loop of Lines 5-30). At the

end of the process, the height of the tree might need to be

increased (or decreased) and this is dealt with in Lines 31-32.

x

 y

Ο

d g

j R6

R4

a
b

c

e

f

h

b

i

R3

R5

R1

R2

k

R1 R2

R6

b a k d e c h i g f j

R5
 R4 R3

Figure 4. The insertion of object k into the HIR-tree of Figure 3.

Assuming the HIR-tree T on the set of objects {a, b, ..., i, j} of

Figure 3 and assuming that the outcomes of the coin tossing

d {2, 4} are 2, 4 and 3, the execution of Insert(k, T) algorithm

for the insertion of the new object k generates the tree shown in

Figure 4. The first coin tossing outcome is spent for the grouping

of the entries at the leftmost leaf, the next outcome for its right

sibling and the last tossing outcome is spent for their parent node.

We will now prove that the Insert(ob, T) operation is history-

independent, by showing that the probability distribution obtained

by running Create(N) on a sequence N of objects that produces a

HIR-tree T, and then applying an Insert(ob, T) operation, where

ob represents a given spatial object, is the same as the probability

distribution which we would have obtained by running Create()

directly on the final sequence of the N' = N  {ob} objects.

Therefore, we will prove that Insert(ob, Create(N)) outputs the

same probability distribution as Create(N').

To prove this, we have to consider how the tree entries are

grouped at level h by the Insert(ob, T) algorithm. First of all we

have to notice that each iteration h of the 'repeat-until' loop of the

algorithm modifies the topology of the tree only at level h. Let uh

be the node where a new entry was inserted by Insert(ob, T) at

level h (note that if uh is a leaf, the new entry is the object ob).

The nodes that lie on the left side of uh are not affected by

Insert(ob, T). The node uh and the nodes that lie on the right side

of uh will obtain exactly the same memory representation as they

would have been obtained by the execution of the Create(N')

operation, however, by using new coin tosses. Since the coin

tosses used during the execution of the Insert() and Create()

operations are independent, the probability distribution of the

final result of the Insert(ob, Create(N)) is the same as if we had

run the Create(N') operation directly on the modified set of the

N' = N  {ob} objects.

5. CONCLUSION

The paper introduced the History-Independent R-Tree (HIR-tree),

an R-tree variant with the additional provable property that its

evolution in time is independent from the sequence of the

historical modification operations performed from initialization to

the current state of the structure. The new indexing method

supports efficient history-independent randomized algorithms for

spatial object insertions, deletions and updates, while at the same

time it is space efficient and fast, in an analogous way to the

original R-tree. Future plans are to analytically and

experimentally verify the space- and time efficiency of the

proposed history-independent indexing method. It is expected that

this work will open the way to the construction of many other

efficient history-independent pointer-based indexing structures for

a wide variety of applications.

6. REFERENCES

[1] O. Amble and D. Knuth: Ordered hash tables. The Computer

Journal, 17(2), pp.135-142 (1974).

[2] G.E. Blelloch and D. Golovin: Strongly history-independent

hashing with applications. In Proceedings of the IEEE Symp.

on Foundations of Computer Science, pp.272–282 (2007).

[3] G.E. Blelloch, D. Golovin, and V. Vassilevska: Uniquely

represented data structures for computational geometry. In

Proceedings of the Scandinavian Workshop on Algorithm

Theory (SWAT), LNCS, Vol. 5124, pp.17-28, Springer,

Heidelberg (2008).

[4] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan:

Making data structures persistent. J. Comput. Syst. Sci.

(JCSS), 38(1), pp.86-124 (1989).

[5] D. Golovin: B-treaps: A uniquely represented alternative to

B-trees. In Proceedings of the ICALP Conf., pp.487-499 (2009).

[6] A. Guttman: R-trees: a dynamic index structure for spatial

searching. In ACM SIGMOD Conference, pp.47–57 (1984).

[7] J.D. Hartline, E.S. Hong, A.E. Mohr, W.R. Pentney, and

E. Rocke: Characterizing history independent data structures.

Algorithmica 42(1), pp. 57-74 (2005).

[8] I. Kamel and C. Faloutsos: On packing R-trees. In

Proceedings of the Second International ACM Conference on

Information and Knowledge Management (CIKM),

pp. 490-499, Washington D.C., (1993).

[9] I. Kamel and C. Faloutsos: Hilbert R-tree: an improved

R-tree using fractals. In Proceedings of the VLDB

Conference, pp. 500-509, Santiago, Chile (1994).

[10] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, and

Y. Theodoridis: R-trees: theory and applications,

Springer-Verlag (2005).

[11] D. Micciancio: Oblivious data structures: applications to

cryptography. In Proceedings of the STOC Conference (1997).

[12] M. Naor, G. Segev, and U. Wieder: History-independent

cuckoo hashing. In Proceedings of the ICALP Conference

Part II, LNCS Vol. 5126, pp. 631-642. Heidelberg (2008).

[13] M. Naor and V. Teague: Anti-persistence: history

independent data structures. In Proceedings of the Thirty-

Third Annual ACM STOC Symposium, pp. 492–501 (2001).

[14] Y. Tao and D. Papadias: Efficient historical R-trees. In

Proceedings of the SSDBM Conference, pp.223-232 (2001).

[15] Wikipedia: 2007 Formula One espionage controversy,

Available at http://goo.gl/nj4N5, valid as of November 2011.

12

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sarnak:Neil.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sleator:Daniel_Dominic.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tarjan:Robert_Endre.html

