
Processing Skyline Queries in Temporal Databases
Christos Kalyvas

Department of Information and
Communication Systems Engineering,

University of the Aegean,
Samos, Greece

chkalyvas@aegean.gr

Theodoros Tzouramanis
Department of Information and

Communication Systems Engineering,
University of the Aegean,

Samos, Greece
ttzouram@aegean.gr

Yannis Manolopoulos
Department of Informatics,

Aristotle University of Thessaloniki,
Greece

manolopo@csd.auth.gr

ABSTRACT
The skyline query aims to filter out a set of eligible points on the
basis of a set of evaluation criteria and out of a potentially large
dataset of points. The computation of this decision support
problem has been studied across a wide range of environments and
of types of data. A field of research that has remained unexplored
in the context of this problem, and which would also greatly
benefit from the study of the computation of the skyline query, is
that of temporal databases. A solution for computing skyline
queries and some of its variants over temporal data is put forward
here. An experimental study indicates the promising effectiveness
and practicability of the proposed extension of the skyline query
processing in real-life temporal data applications.

CCS Concepts
• Information systems➝Database query processing; • Information
systems➝Temporal data.

Keywords
Temporal databases, processing skyline-based queries, algorithms,
experimentation, performance evaluation.

1. INTRODUCTION
In recent years, the skyline query [4] has received a considerable
amount of attention because of its ability to highlight in an
efficient way the most eligible subset of a set of objects on the
basis of a bunch of user-defined criteria. Specifically, given a point
dataset in a d-dimensional space, the skyline query retrieves the
points which are not dominated by any other data point in the
dataset. A point is said to dominate another point if it is as good or
better in all dimensions and strictly better in at least one
dimension. Without loss of generality, it is assumed that a point p
dominates another point r if, for all dimensions, p has equal or
smaller coordinate values than r and, in at least one dimension, the
value of p is strictly smaller than r.

The following example better illustrates this concept: it is assumed
that a traveler carries out a search for a hotel room. The price of a
room is expected to increase as the distance of the hotel from the

city center decreases; therefore a decision-support mechanism is
needed to find the optimal combination between the two
dimensions of distance and price. On the basis of the dataset of
Figure 1(a), and by taking into account the first two columns as
the primary decision criteria, the potential optimal selection for the
user’s preferences would be {a, b, d}.

Hotel Price
(€)

Distance from
the city center

(Km)

Season of operation
(months of the year)

Start End
a 15 1,200 1 10
b 25 550 4 8
c 45 1,000 6 10
d 95 200 5 7
e 103 350 3 10
f 147 275 6 7
g 80 850 5 7
h 70 670 6 8
i 65 1,400 5 10
j 83 1,300 5 12

(a)

price Ο

b [4, 8]

di
sta

nc
e

25 125 100 75 50

25
0

12
50

10

00

75
0

50
0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]
f [6, 7]

h [6, 8]

g [5, 7]

j [5, 12]
i [5, 10]

(b)

Figure 1: (a) A dataset of hotels, (b) The skyline of the dataset.

The skyline operator has not yet been optimized to handle
temporal data. In this class of data regarding time, the period of
interest needs to be added as an additional constraint to be
evaluated together with the decision criteria of the traditional
skyline query. On this basis, the optimal selection that will cover
the desired scenario, on the dataset for the example of Figure 1,
for hotels operating in the 4th month of the year, would be the set
of hotels {a, b, e} which differs from the set retrieved by applying
the traditional skyline query without considering the time domain.

The paper therefore studies the extension of the skyline query for
temporal data and aims to demonstrate how the strategy for calcu-
lating the traditional skyline is affected when the time factor is also

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SAC’17, April 3-7, 2017, Marrakesh,, Morocco.
© 2017 ACM ISBN 978-1-4503-4486-9/17/04…$15.00.
http://dx.doi.org/10.1145/3019612.3019677

893

http://dx.doi.org/10.1145/3019612.3019677

taken into consideration. Efficient algorithms for processing modi-
fied versions of the static, dynamic, and reverse skyline queries for
temporal data will be proposed, together with a new dominant
method for evaluating temporal data using the skyline operator.

Section 2 summarizes the related work on skyline query processing
as well as the various indexing methods for storing and querying
temporal data. Section 3 formulates the problem addressed in this
work by introducing the relevant terminology. Section 4 presents
the proposed algorithms for processing skyline queries in temporal
databases. Section 5 reports on the experimentation results on real
and synthetic data regarding the performance of the proposed
algorithms. Section 6 concludes and looks ahead to possible
extensions of this work.

2. RELATED WORK
Skyline query processing. The computation of the skyline in
database research is equivalent to determining the maximal vector
problem in computational geometry, equivalent to the pareto
optimal set [13] problem in operations research. The first work to
address the skyline computation problem in the databases context
is [4]. The first index-based solutions for processing the skyline
query were the Bitmap and the Index algorithms proposed in [23].
The Nearest Neighbor (NN) algorithm [12] that followed is the
first to use the wide-spread R-tree index [8]. The Branch & Bound
(BBS) algorithm [20] is an improvement on the NN algorithm and
offers a state-of-the-art and I/O optimal solution to the problem
since it traverses the R-tree only once.

A natural extension of the skyline query is the dynamic skyline
query [20], in which the dynamic coordinates of every point object
in the dataset are given by a set of functions that are based on the
distance of the point to a given reference query point q. Intuitively,
the dynamic skyline corresponds to the skyline on a transformed
space in which the query point q becomes the new origin-point and
all the distances are computed on the basis of this point. Dynamic
skyline queries are quite useful when the user’s preferences on
every axis are defined explicitly, forming a vector of preferences
on the d-dimensional space. The dynamic skyline problem has
been studied in several domains such as spatial databases [22],
subspaces [25], data streams [15], etc.

The reverse skyline query and the methods for processing it
efficiently are introduced in [5] and [6]. It is based on the dynamic
skyline and its goal is to identify the influence of a given vector of
characteristics over a dataset of vectors of user preferences based
on the distance between them and the given vector. Given the
preferences of potential hotel customers as points in the two-
dimensional (distance and price) space, the reverse skyline query
can provide an answer if it makes sense to offer them a hotel room
q at a specific distance from the city center and at a specific price.
The hotel room q (becoming an origin-point) will be eligible for a
potential traveler, if it belongs to the dynamic skyline of the vector
of her/his preferences p. Many reverse skyline variants have been
proposed for several domains such as for data streams [29],
uncertain data [16], wireless sensor networks [28], etc.

Temporal data processing. The increasing interest in maintaining
numerous time-varying data versions and in supporting queries and
trends analysis for decision making using these data, has led to the
publication of over 2,000 research papers, to a comprehensive
glossary of terminology [9], surveys and books in temporal
databases. These usually refer to two types of time, valid time and

transaction time. The first corresponds to the time when a fact is
true in the real world. The second is the time during which a
piece of data is stored in the database. Databases that combine
both these types of time are called bi-temporal.

Surveys of access methods for efficient query processing in
temporal databases are found in [21] and [19]. A cluster of these
methods are modifications of the traditional B+-tree access
structure such as the Multi-version B-tree [1] and the Overlapping
B+-trees [26]. They usually index tuples in the form <k, t1, t2> in
which k is a key of a database relation and [t1, t2] is a time interval,
which in most of these cases is the transaction time. Another
cluster employs mapping strategies and transformations such as the
mapping of time intervals to single-dimensional points in MAP21
[18] or the interval transformation in the Interval Space
Transformation method [7]. These methods usually index valid
time ranges of the form [v1, v2]. Another cluster is comprised of
extensions of space partitioning indexing structures such as the
4R-tree [2], 3D R-tree [27], MV3R-tree [24] etc. Most of these
methods can efficiently support tuples of the form <k, t1, t2, v1, v2>,
and can index both temporal and bi-temporal data.

While several temporal queries, joins and semijoins have been
explored for several application domains, a query that has not been
discussed yet in temporal databases is the skyline query and its
variants. This paper addresses the problem and proposes
algorithms for computing efficiently the well-known static,
dynamic and reverse skylines for temporal data. Closely related
work is found in [11], in which the interval skyline query is
introduced for time series applications. However, the properties
that are valid for the time series environment differ entirely from
those in the field of general temporal (non-time-series) data.
Therefore the proposed algorithm is not applicable in temporal and
bi-temporal databases. The present paper could be seen to
complete the work of [14] and [10], both of which study the top-k
query on temporal data, i.e. a query that belongs to the same
broader family of ranking queries as the skyline query.
Importantly, in order to support the convex skyline query for sets
of spatiotemporal objects in privacy aware environments in which
the disclosure of only aggregated values of objects is allowed, the
authors in [17] refer to the same term temporal skyline but with a
meaning which differs from the meaning used in this paper.

3. PROBLEM FORMULATION
The study involves the extensions of the static, dynamic and
reverse skyline queries for the handling of temporal data. It will
focus in one dimension of time, which can be either the transaction
or the valid time and will comment on the extension of the
proposed solution to handle both time dimensions. The following
definitions will help to clarify the main angles of the paper.

Definition 1 - Temporal dominance: Given a time-varying point
dataset P in a d-dimensional space D and a point p (p1, ..., pd) ∈ P
with validity in the time interval tp, the point p temporally
dominates in the time interval t another point r (r1, ..., rd) ∈ P with
validity in the time interval tr, denoted as p  t r, if and only if t is
the non-null intersection between the time intervals tp and tr; and
∀ i ∈ {1, ..., d} we have pi ≤ ri and ∃ j ∈ {1, ..., d}: pj < rj.

Definition 2 - Temporal Skyline Query: Given a time-varying
point dataset P in a d-dimensional space D, the temporal skyline
query in the time interval ts retrieves the set of time-varying points
SLts(P) ⊆ P which are not temporally dominated by any other point

894

in P in at least the non-null time interval t ⊆ ts, that is, SLts(P) =
{(p, t), where t ⊆ ts and p ∈ P | ∄ r ∈ P: r  t p}. SLts(P) is called
the temporal skyline of P in the time interval ts.

Figure 1(a) illustrated the temporal database of ten data tuples
represented in Figure 1(b) by time-varying points P = {a, b, ..., j}
in the two-dimensional space. Some data points in the figure
temporally dominate others, such as point b which temporally
dominates point c in the time interval [6, 8]. The temporal skyline
of P in the time interval [3, 8] is the set SL[3, 8](P) = {(a, [3, 8]),
(b, [4, 8]), (d, [5, 7]), (e, [3, 4]), (e, [8, 8])}. Note that point e is
part of the temporal skyline of P in two different time intervals.

Definition 3 - Dynamic Temporal Dominance: Given a time-
varying point dataset P in a d-dimensional space D and a query
point q (q1, ..., qd) ∈ D with validity in the time interval tq, a point
p (p1, ..., pd) ∈ P with validity in the time interval tp dynamically
temporally dominates another point r (r1, ..., rd) ∈ P with validity
in the time interval tr with regard to q in the time interval t,
denoted as p  (q, t) r, if and only if t is the non-null intersection
between the time intervals tp, tr and tq, and ∀ i ∈ {1, ..., d} we have
|qi − pi| ≤ |qi − ri| and ∃ j ∈ {1, ..., d}: |qj − pj| < |qj − rj|.

Definition 4 - Dynamic Temporal Skyline Query: Given a time-
varying point dataset P in a d-dimensional space D and a query
point q (q1,..., qd) ∈ D with validity in the time interval tq, the
dynamic temporal skyline query of P with regard to q in the time
interval tq retrieves the set SL(q, tq)(P) of points in P which are not
dynamically temporally dominated by any other point in P in at le-
ast the non-null time interval t ⊆ tq, that is, SL(q, tq)(P)={(p,t), where
t ⊆ tq and p ∈ P | ∄ r ∈ P: r (q, t) p}. SL(q, tq)(P) is called the dyna-
mic temporal skyline of P with regard to q in the time interval tq.

price Ο

b [4, 8]

di
st

an
ce

25 125 100 75 50

25
0

12
50

10

00

75
0

50
0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]
f [6, 7]

h [6, 8]

g [5, 7]

 j [5, 12]
i [5, 10]

q [5, 7]

b' [4, 8]

c' [6, 10]

a' [1, 10]

e' [3, 10]
f' [6, 7] d' [5, 7]

Figure 2: The dynamic temporal skyline of the dataset of Figure 1
with regard to a query point q in the time interval [5, 7].

In Figure 2 every database point p (px, py) in the original two-
dimensional space of Figure 1(b) is transformed into a point
p' (|qx − px|, |qy − py|) in a new two-dimensional space, the origin in
which is the query point q (50, 600) with validity in the time
interval [5, 7]. The dynamic temporal skyline of P with regard to q
consists of the set SL(q, [5, 7])(P) = {(b, [5, 7]), (c, [6, 7]), (h, [6, 7]),
(i, [5, 5])}. Again it is possible for a data point to be part of a
dynamic temporal skyline in more than one subinterval.

Definition 5 - Reverse Temporal Skyline Query: Given a time-
varying point dataset P in a d-dimensional space D and a reference
query point q (q1, ..., qd) ∈ D with validity in the time interval tq,

the reverse temporal skyline query of P with regard to q in the time
interval tq retrieves the set RSL(q, tq)(P) of points in P which take q
as one of their dynamic temporal skyline points in at least the non-
null time-interval t ⊆ tq. This means that a point p ∈ P with validi-
ty in the time interval tp belongs to the set RSL(q, tq)(P) and therefo-
re is a reverse temporal skyline of q in the time-interval t, if there
does not exist any other point r ∈ P with validity in the time inter-
val tr such that (1) t is the non-null intersection between the time
intervals tp, tr and tq, (2) ∀ i ∈ {1, .., d}: |ri − pi| ≤ |qi − pi|, and (3)
∃ j ∈ {1, ..., d}: |rj − pj| < |qi − pj|. RSL(q, tq)(P) is called the reverse
temporal skyline of P with regard to q in the time interval tq.

price Ο

b [4, 8]

di
sta

nc
e

25 125 100 75 50

25
0

12
50

10

00

75
0

50
0

a [1, 10]

c [6, 10]

d [5, 7]

e [3, 10]

f [6, 7]

h [6, 8]

g [5, 7]

j [5, 12]

i [5, 10]

q [5, 5]

Figure 3: The reverse temporal skyline of the dataset of Figure 1 with

regard to a query point q in the time instant 5.

In the example of Figure 3, the reverse temporal skyline of P with
regard to query point q (50, 600) in the time interval [5, 5], i.e. in
the time instant 5, consists of the set RSL(q, [5, 5])(P) = {(a, [5, 5]),
(b, [5, 5]), (g, [5, 5]), (i, [5, 5])}. For instance, since the dynamic
temporal skyline of data point g in the time instant 5 contains the
query point q (i.e. this holds because no any other data point exists
in the grey range of Figure 3 in the time instant 5), g is a reverse
skyline point of q in that time instant.

4. SKYLINE QUERY PROCESSING IN
TEMPORAL DATA

4.1 The Temporal Skyline Query
The algorithm for computing the temporal skyline of a time-
varying point dataset is an extension of the original BBS algorithm
[20] for traditional (non-temporal) data. Since BBS uses a typical
data-partitioning method, such as the R-tree, to serve as the
backbone indexing method, in this paper the 3D R-tree access
method [27] is considered to be the best choice for maintaining the
temporal data. The reason for this choice is that the description of
the 3D R-tree differs only slightly from that of the traditional
R-tree in respect of its ability to store transaction and/or valid time
data as extra data dimensions in the tree. Another reason for
selecting the 3D R-tree is that it is accompanied by a simple imple-
mentation and requires the fewest possible modifications to the
built-in functionalities of modern database management systems as
compared to its competitors in the temporal databases domain. The
3D R-tree can also straightforwardly support as many user-defined
data dimensions as required, and for any skyline query processing
application, as compared to most of its temporal indices
competitors, which can support only a single dimension for the key
of the data tuples, plus of course one or two time dimensions.

895

Algorithm 1: The temporal skyline query ()

Input: A dataset P, indexed using the 3D R-tree

 and a requested time interval ts.

Output: The temporal skyline SLts of P.

1:

2:
3:
4.
5:

6:
7:

8:

9:
10:
11:
12:

SLts = H = ∅; // H is a heap
FOR every 3D R-tree root entry e with validity
 in the time interval te DO
 IF te ∩ ts ≠ ∅ THEN insert (e, te ∩ ts) into H;
WHILE H is not empty DO
 Remove top entry (e, te) of H;
 FOR every interval t ⊆ te in which e is not
 temporally dominated by any point in SLts DO
 IF e is an intermediate entry THEN
 FOR every child ee of e, with validity
 in the interval tee with t ∩ tee ≠ ∅ DO
 FOR every time interval t’ ⊆ t ∩ tee
 in which ee is not temporally
 dominated by any point in SLts DO
 Insert (ee, t’) into H;
 ELSE // e is a data point
 Insert (e, t) into SLts;
RETURN SLts;

Algorithm 1: The temporal skyline query.

The pseudo code of the algorithm for computing the temporal
skyline is illustrated in Algorithm 1. The proposed algorithm
makes temporal dominance checks by considering independently
the time dimension. The point dataset of Figure 1 will be used,
organized in the four MBRs R1, R2, R3 and R4 that are illustrated in
Figure 4. For simplicity, it will be assumed that the root node of
the 3D R-tree holds only these four MBRs. The distances are
computed according to L1 norm, i.e. the mindist of a data point to
the origin point O of the data space is equal to the sum of its
coordinates, while the corresponding mindist of an MBR equals the
mindist of its lower left-corner point.

price Ο

b [4, 8]

di
st

an
ce

25 125 100 75 50

25
0

12
50

10

00

75
0

50
0

a [1, 10]

c [6, 10]

R1 [1, 10]

d [5, 7]
e [3, 10] f [6, 7]

R2 [3, 10]

h [6, 8]

g [5, 7]
R3 [5, 8]

 j [5, 12]
i [5, 10]

R4 [5, 12]

Figure 4: The dataset of Figure 1 organized in four MBRs.

The requested time interval to compute the temporal skyline is
assumed to be the ts = [3, 8]. The algorithm in Lines 1-2 starts from
the 3D R-tree root node and inserts all its entries with time validity
overlapping the requested time interval in a heap H, in the form
{(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]), (R4, [5, 8])}, sorted according
to the MBRs’ mindist. Then, by executing Lines 4-9 of the
algorithm, the MBR entry (R2, [3, 8]) with the minimum mindist

will be replaced in the heap by its data entries, in the form:
(d, [5, 7]), (f, [6, 7]), and (e, [3, 8]).

The next entry to be extracted from the heap according to Figure 5
is (d, [5, 7]), which, according to Line 11 of the algorithm, is
inserted into the temporal skyline list. The next entry to be
extracted from the heap is (f, [6, 7]) for which, in Line 5 of the
algorithm, it is discovered that it is temporally dominated in every
time instant in the interval [6, 7] by entry (d, [5, 7]) of the temporal
skyline. The next entry to be extracted from the heap is (e, [3, 8])
for which, in Line 5 of the algorithm, it is discovered that it is not
temporally dominated in the time subintervals [3, 4] and [8, 8],
therefore the corresponding entries (e, [3, 4]) and (e, [8, 8]) are
inserted in the temporal skyline. The MBR R1 is then expanded
and, as Figure 5 shows, its contents are inserted in the heap.
Finally, after processing some more entries, the MBR R4 is
extracted from the heap, which, however, is temporally dominated
in the entire requested time interval [3, 8] of the query.

action H content SL[3, 8] () content
expand
root in
[3, 8]

(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]),
(R4, [5, 8])

–

expand R2
in [3, 8]

(d, [5, 7]), (f, [6, 7]), (e, [3, 8]),
(R1, [3, 8]), (R3, [5, 8]), (R4, [5, 8])

(d, [5, 7]), (e, [3, 4]), (e, [8, 8])

expand R1
in [3, 8]

(b, [4, 8]), (R3, [5, 8]), (c, [6, 8]),
(a, [3, 8]), (R4, [5, 8])

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]),
(b, [4, 8]), (a, [3, 8])

Figure 5: Processing steps of the example execution of Algorithm 1.

The correctness of the proposed algorithm is straightforwardly
inherited from the corresponding correctness [20] of the BBS
algorithm for traditional (non-temporal) data. This means that
every data point added into the temporal skyline during the
execution of the algorithm is guaranteed to be a final temporal
skyline point for the time interval under consideration. Also, every
data point in the 3D R-tree will be examined by the algorithm,
unless one of its ancestor nodes has been pruned for the whole time
interval of the validity of the data point. The proposed algorithm is
also progressive, it provides neither false misses nor false hits and
it is able to allow the user to determine the order in which skyline
points will be returned.

In the case of bi-temporal data, the algorithm can perform temporal
dominance checks by considering every time dimension indepen-
dently, which means that a data point belongs to the temporal
skyline only if it is not temporally dominated by any other point in
the dataset in both the valid and transaction time dimensions.

4.2 The Dynamic Temporal Skyline Query
While the static temporal skyline evaluates the data objects on the
basis of the minimum (or maximum) values of their coordinates,
the dynamic temporal skyline evaluates the data objects in respect
of a customer’s given preference point q (q1, …, qd) within a
specified time interval tq (e.g. a hotel at 50 euros, at a 600 meters
from the city center, the following April). Therefore, the dynamic
temporal skyline query with regard to q in the time interval tq, for
every data point p (p1, …, pd) with validity in the time interval tp
which overlaps tq, specifies d functions of the form ∀ i ∈ {1, ...,
d}: fi = |qi − pi|, and the goal is to return the static temporal skyline
of P in the time interval tq, in the transformed/dynamic workspace
which has q as its point of origin and the coordinates of every
object p in every dimension are defined by the functions fi.

896

Algorithm 1 is applicable to dynamic temporal skylines by storing
in the heap the entries according to their mindist in the dynamic
workspace. Please refer to [20] for more details. The main
modifications that are needed, so that Algorithm 1 can process the
dynamic temporal skyline query, is the replacement of the
temporal dominance checks in Lines 5 and 8 by dynamic temporal
dominance checks, as they are set out in Definition 3.

4.3 The Reverse Temporal Skyline Query
As with the dynamic temporal skyline, the reverse temporal
skyline evaluates the data objects with regard to a given query
point q on a specified time interval tq. However, the main
difference between these two queries is that the dynamic temporal
skyline query can be seen as a query from the customer’s perspec-
tive whereas the reverse temporal skyline can be seen as a query
from the company’s perspective (e.g. which customers –having
their preferences represented by data points in the workspace–
would be interested in a hotel room at 50 euros, at 600 meters from
the city center, between October and May?).

Four different algorithms for processing the reverse skyline query
for traditional (non-temporal) data are proposed in [5] and [6], with
the Branch & Bound Reverse Skyline (BBRS) algorithm [5] to be
the one selected to serve as a backbone algorithm for extension in
order to support the reverse temporal skyline. The BBRS algorithm
is chosen for the simplicity of its implementation and its ability to
run without the need to preprocess the dynamic skyline of every
point in the dataset. The drawback of the BBRS in comparison to
its three competitors is that it requires that the index be traversed
once for every candidate reverse skyline point that is found in the
final filtering step of the algorithm. This can be easily overcome
by ensuring that the algorithm is accompanied by a buffer to hold
the most frequently –or the least recently– used nodes of the index
in memory for faster potential future usage.

Algorithm 2: The reverse temporal skyline query ()

Input: A dataset P, indexed using the 3D R-tree,

 a query point q and a time interval tq.

Output: The reverse temporal skyline RSL(q, tq) of P

1:

2:
3:
4:
5:

6:
7:

8:

9:
10:
11:
12:

13:
14:

RSL = H = ∅; // H is a heap
FOR every 3D R-tree root entry e with validity
 in the time interval te DO
 IF te ∩ tq ≠ ∅ THEN insert (e, te ∩ tq) in H;
WHILE H is not empty DO
 Remove top entry (e, te) of H;
 FOR every interval t ⊆ tq ∩ te in which e is
 not globally temporally dominated by any
 point in RSL DO
 IF e is an intermediate entry THEN
 FOR every child ee of e, with validity
 in the interval tee with t ∩ tee ≠ ∅ DO
 FOR every time interval t’ ⊆ t ∩ tee in
 which ee is not globally temporally
 dominated by any point in RSL DO
 Insert (ee, t’) into H;
 ELSE // e is a data point
 Execute a range query based on e, q, t;
 IF the range query is empty in any time
 interval t’ ⊆ t THEN
 Insert (e, t’) into RSL;
RETURN RSL;

Algorithm 2: The reverse temporal skyline query.

The pseudo code of the proposed algorithm is illustrated in
Algorithm 2. The algorithm in Lines 5 and 8 makes global
temporal dominance checks according to the following definition.

Definition 6 - Global Temporal Dominance: Given a time-va-
rying point dataset P in a d-dimensional space D and a query point
q (q1, ..., qd) ∈ D with validity in the time interval tq, a point p (p1,
..., pd) ∈ P with validity in the time interval tp globally temporally
dominates another point r (r1, ..., rd) ∈ P with validity in the time
interval tr with regard to q in the non-null time interval t if and
only if (1) t is the non-null intersection between the time intervals
tp, tr and tq, (2) ∀ i ∈ {1, ..., d}: (pi − qi)(ri − qi) > 0, (3) ∀ i ∈ {1,
..., d}: |pi − qi| ≤ |ri − qi|, and (4) ∃ j ∈ {1, ..., d}: |pj − qj| < |ri − qj|.

On the basis of the definition and of the example of Figure 3, it
can be said that the point g globally temporally dominates the
point j in the time instant 5.

The global temporal dominance checks in the algorithm help with
the pruning of intermediate index nodes (and data points) which
cannot store (or be, respectively) reverse temporal skyline points.
The first ten lines of the algorithm are executed in a manner
similar to Algorithm 1 for the temporal skyline. However, for
every point e with validity te overlapping the time interval tq of the
query q that is not globally temporally dominated in a time interval
t ⊆ te ∩ tq, a further examination is required. This examination is
performed in Lines 11-12 of the algorithm by issuing a range
query, e being in the centre of the range window and q in its
corner, similarly to that illustrated in grey around the data point g
in Figure 3. As [5] shows for the case of non-temporal data, if this
range query returns no data point for a time interval t' ⊆ t, then e is
a reverse temporal skyline point with regard to q in t'. Therefore, in
this case in Line 13 of the algorithm the tuple (e, t') is inserted into
the RSL(q, tq) list.

In the reverse skyline query of Figure 3 with regard query point
q (50, 600) and time instant 5, the data entries which are valid and
not globally temporally dominated by any other point in this
instant are a, i, h, b, d, and e. However, after performing the range
query checks of Lines 11-12 of the algorithm, only the first four of
these points is found to belong to the reverse temporal skyline.

The handling of bi-temporal data can be treated in a manner analo-
gous to the temporal skyline query, by performing global temporal
dominance checks in every time dimension independently.

5. EXPERIMENTAL STUDY
The proposed query algorithms were implemented in Java (JDK
version 8). The 3D R-tree implementation is based on the R*-tree
implementation that can be downloaded from the ChoroChronos
portal1, with the operational modification to preferably select time
dimension splitting (time-split) in the case of an overflowing tree
node split. The workstation that was used for evaluation was
equipped with Intel I7 8GB RAM and Windows 10 Pro 64-bit.

The experiments used two datasets: a synthetic dataset constructed
from 1,000,000 uniformly distributed time-varying two-
dimensional points with a uniformly distributed time interval
validity of a maximum of 20% of the lifetime of the scenario,
which is 1,000 time instants; and the real-life Major Hotel Chain
dataset [3] with 147,029 bookings collected from five U.S. hotels,

1 http://chorochronos.datastories.org

897

http://chorochronos.datastories.org/

of which 100,000 were selected randomly. The construction of a
two-dimensional point for every single booking record considered
the Nightly_Rate column, plus a uniformly distributed artificial
column of values between 0 and 100, representing for example
customer rating scores. Every booking’s time validity interval is
the combination of the Check_In_Date and Check_Out_Date
columns as they are given by the data provider. The lifetime of the
scene is 56 distinct time instants, i.e. 56 dates.

Every experiment was repeated 10 times and the average value of
every measured parameter was calculated. As with the dynamic
and reverse temporal skyline queries, at every run a different
randomly selected query point was used. In the following, unless
otherwise stated, the findings of the performance investigation of
the proposed query processing algorithms are qualitatively compa-
rable, whether synthetic or real data are used, whence the decision
for partial depiction. Four different values are considered for the
file system page size, i.e. 1Kb, 2Kb, 4Kb and 8Kb. The 3D R-tree
node size is set to be equal to the page size. To get a crystal-clear
view on the algorithms’ performance, no buffer is introduced to
hold any 3D R-tree node in main memory during the experiments.

 (a) (b)

Figure 6: The 3D R-tree index size in a number of nodes, (a) for the
synthetic dataset, and (b) for the real dataset.

The graphs in Figure 6 illustrate the 3D R-tree index size for the
synthetic (left) and real (right) datasets. The index size was
measured at every 20% intervals of the data inserted. These results
help to measure the percentage of the index that is accessed when
processing the static and dynamic temporal skyline queries in the
subsequent experiments, since every execution of their algorithms
traverses the 3D R-tree only once.

 (a) (b)

Figure 7: (a) The time cost, and (b) the Ι/Ο cost, for executing the
temporal skyline query algorithm for the synthetic dataset.

The graphs in Figure 7 illustrate the time-cost in seconds (left) and
the I/O cost in page accesses (right) for answering the temporal
skyline query using the synthetic dataset. The query is executed at
every 20% intervals of the data inserted, in every case for a time
interval equal to the lifespan of the whole scenario, the skyline is
thus computed for every time instant in the lifetime of the scene.
By comparing the I/O cost to answer the query and the correspon-
ding index size shown in Figure 6(a), it is concluded that the
temporal skyline algorithm accesses about 8% to 23% of the nodes
of the index. This cost is justified by the large number of the 1,000

 (a) (b)

Figure 8: (a) The time cost, and (b) the Ι/Ο cost, in both cases for
executing the temporal skyline query algorithm for the real dataset.

time instants for which the skyline is computed with only a single
tree traversal using the proposed Algorithm 1.
The graphs in Figure 8 illustrate the time (left) and the I/O (right)
cost for answering the temporal skyline query using the real-life
dataset. The query is executed again for all instants in the lifetime
of the whole scene. Since the real dataset scene lifetime is much
smaller than that of the synthetic dataset, the algorithm using the
real dataset provides relatively faster answers due to much fewer
temporal dominance checks.
A comparison of the I/O cost for answering the temporal skyline
query using the real dataset with the corresponding index size
shown in Figure 6(b) indicates that the proposed query algorithm
appears to accesses about 3% to 19% of the index. This percentage
represents (as in the case of the synthetic dataset) a zone of tree
nodes accessed by the algorithm that have MBRs located closely to
the origin point O of the workspace.

 (a) (b)

Figure 9: (a) The time cost, and (b) the Ι/Ο cost, for executing the
dynamic temporal skyline query algorithm for the synthetic dataset.

The graphs in Figure 9 show the time (left) and the I/O (right) cost
of the execution of the dynamic temporal skyline query algorithm
using the synthetic dataset. The validity of every query point is set
to be equal to the lifetime of the whole scene. Supporting this
"dynamic" query incurs an expected cost that is larger than the cost
of the corresponding "static" temporal skyline query. This cost is
incurred because the corresponding algorithm accesses a larger
portion of the dataset as the result of the fact that the reference
query point is not always on a corner of the workspace (as it would
be with the ordinary temporal skyline query).

 (a) (b)

Figure 10: (a) The time cost, and (b) the Ι/Ο cost, for executing the
reverse temporal skyline query algorithm for the synthetic dataset.

898

The last graphs in Figure 10 show the time (left) and I/O (right)
cost for executing the reverse temporal skyline query algorithm
using the synthetic dataset. The expected increase in cost in
comparison to the dynamic temporal skyline, even if both queries
access quite similar parts of the data space when using the same
query points q, is due to the additional overhead of the reverse
temporal skyline because of the empty/boolean range query
executed by Algorithm 2 in Line 11.

All the experiments indicate that the computation of a temporal
skyline-based query for the whole domain of the time dimension is
a costly task, with the worst performance when every point in the
dataset is active for a time interval which does not overlap with the
time interval of any other point in the dataset. In this case all the
data belong to the temporal skyline; therefore the algorithms will
need to access all the nodes of the index. By contrast, when all the
points in the dataset have identical time intervals, the performance
of the temporal skyline-based algorithms coincides with the
performance of the corresponding algorithms for traditional (non-
temporal) data.

6. CONCLUSION
The skyline query is a decision support mechanism which retrieves
the value-for-money options of a dataset by identifying the objects
which present the optimal combination of the characteristics of the
dataset. This is the first attempt to involve the time factor, while
optimizing the skyline operator and its dynamic and reverse skyli-
ne variants. This work should hopefully pave the way for the con-
struction of other solutions for processing efficiently skyline-based
queries for a variety of temporal and bi-temporal data applications.
The next step is to investigate the impact of the temporal indexing
method on the cost performance of queries, through the performan-
ce comparison of indexing methods or by proposing new ones, and
to investigate the impact on query execution performance in the
case of many objects with a relatively small or large time interval
lifetime. Future research needs also to consider the introduction of
efficient algorithms for processing extensions of other skyline
query variants that will be applicable to temporal data.

7. REFERENCES
[1] Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer,

P. An asymptotically optimal multiversion B-tree. The VLDB
Journal, 5, 4 (1996), 264-275.

[2] Bliujute, R., Jensen, C. S., Saltenis, S., and Slivinskas, G. Light-
weight indexing of general bitemporal data. In the 12th SSDBM
Conference 2000, 125–138.

[3] Bodea, T., Ferguson, M., and Garrow, L. Data set-choice-based
revenue management: Data from a major hotel chain. Manufactu-
ring & Service Operations Management 11, 2 (2009), 356–361.

[4] Borzsony, S., Kossmann, D., and Stocker, K. The skyline
operator. In the 17th ICDE Conference, 2001, 421–430.

[5] Dellis, E., and Seeger, B. Efficient computation of reverse
skyline queries. In the VLDB Conference, 2007, 291–302.

[6] Gao, Y., Liu, Q., Zheng, B., and Chen G. On efficient reverse
skyline query processing. Expert Systems with Applications, 41, 7
(2014), 3237-3249.

[7] Goh, C. H., Lu, H., Ooi, B.-C., and Tan, K.-L. Indexing temporal
data using existing B+-trees. Data & Knowledge Engineering 18,
2 (1996), 147–165.

[8] Guttman, A. R-trees: a dynamic index structure for spatial
searching, In the ACM SIGMOD Conference, 1984, 47–57.

[9] Jensen, C. S., Dyreson, C. E., et al. The consensus glossary of
temporal database concepts - February 1998 version. In
Temporal Databases: Research and Practice. 1998, 367–405.

[10] Jestes, J., Phillips, J. M., Li, F., and Tang, M. Ranking large
temporal data. Proceedings of the VLDB Endowment 5, 11
(2012), 1412–1423.

[11] Jiang, B., and Pei, J. Online interval skyline queries on time
series. In the ICDE Conference, 2009, 1036–1047.

[12] Kossmann, D., Ramsak, F., and Rost, S. Shooting stars in the
sky: An online algorithm for skyline queries. In the 28th VLDB
Conference, 2002, 275–286.

[13] Kung, H.-T., Luccio, F., and Preparata, F. P. On finding the
maxima of a set of vectors. Journal of the ACM (JACM) 22, 4
(1975), 469–476.

[14] Li, F., Yi, K., and Le, W. Top-k queries on temporal data. The
VLDB Journal, 19, 5 (2010), 715–733.

[15] Li, Z., Peng, Z., Yan, J., and Li, T. Continuous dynamic skyline
queries over data stream. Journal of Computer Research and
Development 48, 1 (2011), 77–85.

[16] Lian, X., and Chen, L. Reverse skyline search in uncertain data-
bases. ACM Transactions on Database Systems 35, 1 (2010), 3.

[17] Morimoto, Y., and Siddique, M. A. Skyline sets query and its
extension to spatio-temporal databases. In the DNIS Workshop,
2010, 317–329.

[18] Nascimento, M. A., and Dunham, M. H. Indexing valid time
databases via B+-trees. IEEE Transactions on Knowledge and
Data Engineering 11, 6 (1999), 929–947.

[19] Ozsoyoglu, G., and Snodgrass, R. T. Temporal and real-time
databases: A survey. IEEE Transactions on Knowledge and Data
Engineering 7, 4 (1995), 513–532.

[20] Papadias, D., Tao, Y., Fu, G., and Seeger, B. Progressive skyline
computation in database systems. ACM Transactions on
Database Systems 30, 1 (2005), 41–82.

[21] Salzberg, B., and Tsotras, V. J. Comparison of access methods
for time-evolving data. ACM Computing Surveys (CSUR) 31, 2
(1999), 158–221.

[22] Sharifzadeh, M., and Shahabi, C. The spatial skyline queries. In
the 32nd VLDB Conference, 2006, 751–762.

[23] Tan, K.-L., et al. Efficient progressive skyline computation. In
the 27th VLDB Conference, 2001, 301–310.

[24] Tao, Y., and Papadias, D. The MV3R-tree: A spatio-temporal
access method for timestamp and interval queries. In the 27th
VLDB Conference, 2001, 431-440.

[25] Tao, Y., Xiao, X., and Pei, J. Efficient skyline and top-k retrieval
in subspaces. IEEE Transactions on Knowledge and Data
Engineering 19, 8 (2007), 1072-1088.

[26] Tzouramanis, T., Manolopoulos, Y., and Lorentzos, N. Overlap-
ping B+-trees: an implementation of a transaction time access
method. Data & Knowledge Engineering 29, 3 (1999), 381–404.

[27] Vazirgiannis, M., Theodoridis, Y., and Sellis, T. Spatio-temporal
composition and indexing for large multimedia applications.
Multimedia Systems 6, 4 (1998), 284–298.

[28] Wang, G., Xin, J., Chen, L., and Liu, Y. Energy-efficient reverse
skyline query processing over wireless sensor networks. IEEE
Transactions on Knowledge and Data Engineering 24, 7 (2012),
1259–1275.

[29] Zhu, L., Li, C., and Chen, H. Efficient computation of reverse
skyline on data stream. In the CSO Joint Conference, 2009,
735–739.

899

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

