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ABSTRACT 
The skyline query aims to filter out a set of eligible points on the 
basis of a set of evaluation criteria and out of a potentially large 
dataset of points. The computation of this decision support 
problem has been studied across a wide range of environments and 
of types of data. A field of research that has remained unexplored 
in the context of this problem, and which would also greatly 
benefit from the study of the computation of the skyline query, is 
that of temporal databases. A solution for computing skyline 
queries and some of its variants over temporal data is put forward 
here. An experimental study indicates the promising effectiveness 
and practicability of the proposed extension of the skyline query 
processing in real-life temporal data applications. 

CCS Concepts 
• Information systems➝Database query processing; • Information 
systems➝Temporal data. 

Keywords 
Temporal databases, processing skyline-based queries, algorithms, 
experimentation, performance evaluation.  

1. INTRODUCTION 
In recent years, the skyline query [4] has received a considerable 
amount of attention because of its ability to highlight in an 
efficient way the most eligible subset of a set of objects on the 
basis of a bunch of user-defined criteria. Specifically, given a point 
dataset in a d-dimensional space, the skyline query retrieves the 
points which are not dominated by any other data point in the 
dataset. A point is said to dominate another point if it is as good or 
better in all dimensions and strictly better in at least one 
dimension. Without loss of generality, it is assumed that a point p 
dominates another point r if, for all dimensions, p has equal or 
smaller coordinate values than r and, in at least one dimension, the 
value of p is strictly smaller than r.   

The following example better illustrates this concept: it is assumed 
that a traveler carries out a search for a hotel room. The price of a 
room is expected to increase as the distance of the hotel from the 

city center decreases; therefore a decision-support mechanism is 
needed to find the optimal combination between the two 
dimensions of distance and price. On the basis of the dataset of 
Figure 1(a), and by taking into account the first two columns as 
the primary decision criteria, the potential optimal selection for the 
user’s preferences would be {a, b, d}.  

Hotel Price 
(€) 

Distance from 
the city center  

(Km) 

Season of operation 
(months of the year) 

Start End 
a 15 1,200 1 10 
b 25 550 4 8 
c 45 1,000 6 10 
d 95 200 5 7 
e 103 350 3 10 
f 147 275 6 7 
g 80 850 5 7 
h 70 670 6 8 
i 65 1,400 5 10 
j 83 1,300 5 12 

(a) 
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(b) 

Figure 1: (a) A dataset of hotels, (b) The skyline of the dataset. 

The skyline operator has not yet been optimized to handle 
temporal data. In this class of data regarding time, the period of 
interest needs to be added as an additional constraint to be 
evaluated together with the decision criteria of the traditional 
skyline query. On this basis, the optimal selection that will cover 
the desired scenario, on the dataset for the example of Figure 1, 
for hotels operating in the 4th month of the year, would be the set 
of hotels {a, b, e} which differs from the set retrieved by applying 
the traditional skyline query without considering the time domain.  

The paper therefore studies the extension of the skyline query for 
temporal data and aims to demonstrate how the strategy for calcu-
lating the traditional skyline is affected when the time factor is also 
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taken into consideration. Efficient algorithms for processing modi-
fied versions of the static, dynamic, and reverse skyline queries for 
temporal data will be proposed, together with a new dominant 
method for evaluating temporal data using the skyline operator.  

Section 2 summarizes the related work on skyline query processing 
as well as the various indexing methods for storing and querying 
temporal data. Section 3 formulates the problem addressed in this 
work by introducing the relevant terminology. Section 4 presents 
the proposed algorithms for processing skyline queries in temporal 
databases. Section 5 reports on the experimentation results on real 
and synthetic data regarding the performance of the proposed 
algorithms. Section 6 concludes and looks ahead to possible 
extensions of this work. 

2. RELATED WORK 
Skyline query processing. The computation of the skyline in 
database research is equivalent to determining the maximal vector 
problem in computational geometry, equivalent to the pareto 
optimal set [13] problem in operations research. The first work to 
address the skyline computation problem in the databases context 
is [4]. The first index-based solutions for processing the skyline 
query were the Bitmap and the Index algorithms proposed in [23]. 
The Nearest Neighbor (NN) algorithm [12] that followed is the 
first to use the wide-spread R-tree index [8]. The Branch & Bound 
(BBS) algorithm [20] is an improvement on the NN algorithm and 
offers a state-of-the-art and I/O optimal solution to the problem 
since it traverses the R-tree only once. 

A natural extension of the skyline query is the dynamic skyline 
query [20], in which the dynamic coordinates of every point object 
in the dataset are given by a set of functions that are based on the 
distance of the point to a given reference query point q. Intuitively, 
the dynamic skyline corresponds to the skyline on a transformed 
space in which the query point q becomes the new origin-point and 
all the distances are computed on the basis of this point. Dynamic 
skyline queries are quite useful when the user’s preferences on 
every axis are defined explicitly, forming a vector of preferences 
on the d-dimensional space. The dynamic skyline problem has 
been studied in several domains such as spatial databases [22], 
subspaces [25], data streams [15], etc.  

The reverse skyline query and the methods for processing it 
efficiently are introduced in [5] and [6]. It is based on the dynamic 
skyline and its goal is to identify the influence of a given vector of 
characteristics over a dataset of vectors of user preferences based 
on the distance between them and the given vector. Given the 
preferences of potential hotel customers as points in the two-
dimensional (distance and price) space, the reverse skyline query 
can provide an answer if it makes sense to offer them a hotel room 
q at a specific distance from the city center and at a specific price. 
The hotel room q (becoming an origin-point) will be eligible for a 
potential traveler, if it belongs to the dynamic skyline of the vector 
of her/his preferences p. Many reverse skyline variants have been 
proposed for several domains such as for data streams [29], 
uncertain data [16], wireless sensor networks [28], etc.  

Temporal data processing. The increasing interest in maintaining 
numerous time-varying data versions and in supporting queries and 
trends analysis for decision making using these data, has led to the 
publication of over 2,000 research papers, to a comprehensive 
glossary of terminology [9], surveys and books in temporal 
databases. These usually refer to two types of time, valid time and 

transaction time. The first corresponds to the time when a fact is 
true in the real world. The second is the time during which a 
piece of data is stored in the database. Databases that combine 
both these types of time are called bi-temporal.  

Surveys of access methods for efficient query processing in 
temporal databases are found in [21] and [19]. A cluster of these 
methods are modifications of the traditional B+-tree access 
structure such as the Multi-version B-tree [1] and the Overlapping 
B+-trees [26]. They usually index tuples in the form <k, t1, t2> in 
which k is a key of a database relation and [t1, t2] is a time interval, 
which in most of these cases is the transaction time. Another 
cluster employs mapping strategies and transformations such as the 
mapping of time intervals to single-dimensional points in MAP21 
[18] or the interval transformation in the Interval Space 
Transformation method [7]. These methods usually index valid 
time ranges of the form [v1, v2]. Another cluster is comprised of 
extensions of space partitioning indexing structures such as the  
4R-tree [2], 3D R-tree [27], MV3R-tree [24] etc. Most of these 
methods can efficiently support tuples of the form <k, t1, t2, v1, v2>, 
and can index both temporal and bi-temporal data. 

While several temporal queries, joins and semijoins have been 
explored for several application domains, a query that has not been 
discussed yet in temporal databases is the skyline query and its 
variants. This paper addresses the problem and proposes 
algorithms for computing efficiently the well-known static, 
dynamic and reverse skylines for temporal data. Closely related 
work is found in [11], in which the interval skyline query is 
introduced for time series applications. However, the properties 
that are valid for the time series environment differ entirely from 
those in the field of general temporal (non-time-series) data. 
Therefore the proposed algorithm is not applicable in temporal and 
bi-temporal databases. The present paper could be seen to 
complete the work of [14] and [10], both of which study the top-k 
query on temporal data, i.e. a query that belongs to the same 
broader family of ranking queries as the skyline query. 
Importantly, in order to support the convex skyline query for sets 
of spatiotemporal objects in privacy aware environments in which 
the disclosure of only aggregated values of objects is allowed, the 
authors in [17] refer to the same term temporal skyline but with a 
meaning which differs from the meaning used in this paper.  

3. PROBLEM FORMULATION 
The study involves the extensions of the static, dynamic and 
reverse skyline queries for the handling of temporal data. It will 
focus in one dimension of time, which can be either the transaction 
or the valid time and will comment on the extension of the 
proposed solution to handle both time dimensions. The following 
definitions will help to clarify the main angles of the paper.  

Definition 1 - Temporal dominance: Given a time-varying point 
dataset P in a d-dimensional space D and a point p (p1, ..., pd) ∈ P 
with validity in the time interval tp, the point p temporally 
dominates in the time interval t another point r (r1, ..., rd) ∈ P with 
validity in the time interval tr, denoted as p  t r, if and only if t is 
the non-null intersection between the time intervals tp and tr; and  
∀ i ∈ {1, ..., d} we have pi ≤ ri and ∃ j ∈ {1, ..., d}: pj < rj.  

Definition 2 - Temporal Skyline Query: Given a time-varying 
point dataset P in a d-dimensional space D, the temporal skyline 
query in the time interval ts retrieves the set of time-varying points 
SLts(P) ⊆ P which are not temporally dominated by any other point 
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in P in at least the non-null time interval t ⊆ ts, that is, SLts(P) = 
{(p, t), where t ⊆ ts and p ∈ P | ∄ r ∈ P: r  t p}. SLts(P) is called 
the temporal skyline of P in the time interval ts.  

Figure 1(a) illustrated the temporal database of ten data tuples 
represented in Figure 1(b) by time-varying points P = {a, b, ..., j} 
in the two-dimensional space. Some data points in the figure 
temporally dominate others, such as point b which temporally 
dominates point c in the time interval [6, 8]. The temporal skyline 
of P in the time interval [3, 8] is the set SL[3, 8](P) = {(a, [3, 8]),  
(b, [4, 8]), (d, [5, 7]), (e, [3, 4]), (e, [8, 8])}. Note that point e is 
part of the temporal skyline of P in two different time intervals. 

Definition 3 - Dynamic Temporal Dominance: Given a time-
varying point dataset P in a d-dimensional space D and a query 
point q (q1, ..., qd) ∈ D with validity in the time interval tq, a point 
p (p1, ..., pd) ∈ P with validity in the time interval tp dynamically 
temporally dominates another point r (r1, ..., rd) ∈ P with validity 
in the time interval tr with regard to q in the time interval t, 
denoted as p  (q, t) r, if and only if t is the non-null intersection 
between the time intervals tp, tr and tq, and ∀ i ∈ {1, ..., d} we have 
|qi − pi| ≤ |qi − ri| and ∃ j ∈ {1, ..., d}: |qj − pj| < |qj − rj|. 

Definition 4 - Dynamic Temporal Skyline Query: Given a time-
varying point dataset P in a d-dimensional space D and a query 
point q (q1,..., qd) ∈ D with validity in the time interval tq, the 
dynamic temporal skyline query of P with regard to q in the time 
interval tq retrieves the set SL(q, tq)(P) of points in P which are not 
dynamically temporally dominated by any other point in P in at le-
ast the non-null time interval t ⊆ tq, that is, SL(q, tq)(P)={(p,t), where 
t ⊆ tq and p ∈ P | ∄ r ∈ P: r (q, t) p}. SL(q, tq)(P) is called the dyna-
mic temporal skyline of P with regard to q in the time interval tq.  
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Figure 2: The dynamic temporal skyline of the dataset of Figure 1 
with regard to a query point q in the time interval [5, 7]. 

In Figure 2 every database point p (px, py) in the original two-
dimensional space of Figure 1(b) is transformed into a point  
p' (|qx − px|, |qy − py|) in a new two-dimensional space, the origin in 
which is the query point q (50, 600) with validity in the time 
interval [5, 7]. The dynamic temporal skyline of P with regard to q 
consists of the set SL(q, [5, 7])(P) = {(b, [5, 7]), (c, [6, 7]), (h, [6, 7]), 
(i, [5, 5])}. Again it is possible for a data point to be part of a 
dynamic temporal skyline in more than one subinterval. 

Definition 5 - Reverse Temporal Skyline Query: Given a time-
varying point dataset P in a d-dimensional space D and a reference 
query point q (q1, ..., qd) ∈ D with validity in the time interval tq, 

the reverse temporal skyline query of P with regard to q in the time 
interval tq retrieves the set RSL(q, tq)(P) of points in P which take q 
as one of their dynamic temporal skyline points in at least the non-
null time-interval t ⊆ tq. This means that a point p ∈ P with validi-
ty in the time interval tp belongs to the set RSL(q, tq)(P) and therefo-
re is a reverse temporal skyline of q in the time-interval t, if there 
does not exist any other point r ∈ P with validity in the time inter-
val tr such that (1) t is the non-null intersection between the time 
intervals tp, tr and tq, (2) ∀ i ∈ {1, .., d}: |ri − pi| ≤ |qi − pi|, and (3)  
∃ j ∈ {1, ..., d}: |rj − pj| < |qi − pj|. RSL(q, tq)(P) is called the reverse 
temporal skyline of P with regard to q in the time interval tq.  
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Figure 3: The reverse temporal skyline of the dataset of Figure 1 with 

regard to a query point q in the time instant 5. 

In the example of Figure 3, the reverse temporal skyline of P with 
regard to query point q (50, 600) in the time interval [5, 5], i.e. in 
the time instant 5, consists of the set RSL(q, [5, 5])(P) = {(a, [5, 5]), 
(b, [5, 5]), (g, [5, 5]), (i, [5, 5])}. For instance, since the dynamic 
temporal skyline of data point g in the time instant 5 contains the 
query point q (i.e. this holds because no any other data point exists 
in the grey range of Figure 3 in the time instant 5), g is a reverse 
skyline point of q in that time instant.   

4. SKYLINE QUERY PROCESSING IN 
TEMPORAL DATA 

4.1 The Temporal Skyline Query 
The algorithm for computing the temporal skyline of a time-
varying point dataset is an extension of the original BBS algorithm 
[20] for traditional (non-temporal) data. Since BBS uses a typical 
data-partitioning method, such as the R-tree, to serve as the 
backbone indexing method, in this paper the 3D R-tree access 
method [27] is considered to be the best choice for maintaining the 
temporal data. The reason for this choice is that the description of 
the 3D R-tree differs only slightly from that of the traditional  
R-tree in respect of its ability to store transaction and/or valid time 
data as extra data dimensions in the tree. Another reason for 
selecting the 3D R-tree is that it is accompanied by a simple imple-
mentation and requires the fewest possible modifications to the 
built-in functionalities of modern database management systems as 
compared to its competitors in the temporal databases domain. The 
3D R-tree can also straightforwardly support as many user-defined 
data dimensions as required, and for any skyline query processing 
application, as compared to most of its temporal indices 
competitors, which can support only a single dimension for the key 
of the data tuples, plus of course one or two time dimensions.  
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Algorithm 1: The temporal skyline query () 

Input:   A dataset P, indexed using the 3D R-tree  

    and a requested time interval ts. 

Output:  The temporal skyline SLts of P. 

 
1: 
 
2: 
3: 
4. 
5: 
 
6: 
7: 
 
8: 
 
 
9: 
10: 
11: 
12: 

SLts = H = ∅; // H is a heap  
FOR every 3D R-tree root entry e with validity 
 in the time interval te DO 
 IF te ∩ ts ≠ ∅ THEN insert (e, te ∩ ts) into H; 
WHILE H is not empty DO 
 Remove top entry (e, te) of H; 
 FOR every interval t ⊆ te in which e is not 
  temporally dominated by any point in SLts DO 
  IF e is an intermediate entry THEN 
   FOR every child ee of e, with validity  
    in the interval tee with t ∩ tee ≠ ∅ DO 
    FOR every time interval t’ ⊆ t ∩ tee 
     in which ee is not temporally 
     dominated by any point in SLts DO 
     Insert (ee, t’) into H; 
  ELSE // e is a data point 
   Insert (e, t) into SLts; 
RETURN SLts; 

Algorithm 1: The temporal skyline query. 

The pseudo code of the algorithm for computing the temporal 
skyline is illustrated in Algorithm 1. The proposed algorithm 
makes temporal dominance checks by considering independently 
the time dimension. The point dataset of Figure 1 will be used, 
organized in the four MBRs R1, R2, R3 and R4 that are illustrated in 
Figure 4. For simplicity, it will be assumed that the root node of 
the 3D R-tree holds only these four MBRs. The distances are 
computed according to L1 norm, i.e. the mindist of a data point to 
the origin point O of the data space is equal to the sum of its 
coordinates, while the corresponding mindist of an MBR equals the 
mindist of its lower left-corner point.  
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Figure 4: The dataset of Figure 1 organized in four MBRs. 

The requested time interval to compute the temporal skyline is 
assumed to be the ts = [3, 8]. The algorithm in Lines 1-2 starts from 
the 3D R-tree root node and inserts all its entries with time validity 
overlapping the requested time interval in a heap H, in the form 
{(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]), (R4, [5, 8])}, sorted according 
to the MBRs’ mindist. Then, by executing Lines 4-9 of the 
algorithm, the MBR entry (R2, [3, 8]) with the minimum mindist 

will be replaced in the heap by its data entries, in the form:  
(d, [5, 7]), (f, [6, 7]), and (e, [3, 8]).  

The next entry to be extracted from the heap according to Figure 5 
is (d, [5, 7]), which, according to Line 11 of the algorithm, is 
inserted into the temporal skyline list. The next entry to be 
extracted from the heap is (f, [6, 7]) for which, in Line 5 of the 
algorithm, it is discovered that it is temporally dominated in every 
time instant in the interval [6, 7] by entry (d, [5, 7]) of the temporal 
skyline. The next entry to be extracted from the heap is (e, [3, 8]) 
for which, in Line 5 of the algorithm, it is discovered that it is not 
temporally dominated in the time subintervals [3, 4] and [8, 8], 
therefore the corresponding entries (e, [3, 4]) and (e, [8, 8]) are 
inserted in the temporal skyline. The MBR R1 is then expanded 
and, as Figure 5 shows, its contents are inserted in the heap. 
Finally, after processing some more entries, the MBR R4 is 
extracted from the heap, which, however, is temporally dominated 
in the entire requested time interval [3, 8] of the query.  

action H content SL[3, 8] ( ) content 
expand 
root in 
[3, 8] 

(R2, [3, 8]), (R1, [3, 8]), (R3, [5, 8]), 
(R4, [5, 8]) 

– 

expand R2 
in [3, 8] 

(d, [5, 7]), (f, [6, 7]), (e, [3, 8]),  
(R1, [3, 8]), (R3, [5, 8]), (R4, [5, 8]) 

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]) 

expand R1 
in [3, 8] 

(b, [4, 8]), (R3, [5, 8]), (c, [6, 8]),  
(a, [3, 8]), (R4, [5, 8]) 

(d, [5, 7]), (e, [3, 4]), (e, [8, 8]), 
(b, [4, 8]), (a, [3, 8]) 

Figure 5: Processing steps of the example execution of Algorithm 1. 

The correctness of the proposed algorithm is straightforwardly 
inherited from the corresponding correctness [20] of the BBS 
algorithm for traditional (non-temporal) data. This means that 
every data point added into the temporal skyline during the 
execution of the algorithm is guaranteed to be a final temporal 
skyline point for the time interval under consideration. Also, every 
data point in the 3D R-tree will be examined by the algorithm, 
unless one of its ancestor nodes has been pruned for the whole time 
interval of the validity of the data point. The proposed algorithm is 
also progressive, it provides neither false misses nor false hits and 
it is able to allow the user to determine the order in which skyline 
points will be returned.  

In the case of bi-temporal data, the algorithm can perform temporal 
dominance checks by considering every time dimension indepen-
dently, which means that a data point belongs to the temporal 
skyline only if it is not temporally dominated by any other point in 
the dataset in both the valid and transaction time dimensions. 

4.2 The Dynamic Temporal Skyline Query 
While the static temporal skyline evaluates the data objects on the 
basis of the minimum (or maximum) values of their coordinates, 
the dynamic temporal skyline evaluates the data objects in respect 
of a customer’s given preference point q (q1, …, qd) within a 
specified time interval tq (e.g. a hotel at 50 euros, at a 600 meters 
from the city center, the following April). Therefore, the dynamic 
temporal skyline query with regard to q in the time interval tq, for 
every data point p (p1, …, pd) with validity in the time interval tp 
which overlaps tq, specifies d functions of the form ∀ i ∈ {1, ..., 
d}: fi = |qi − pi|, and the goal is to return the static temporal skyline 
of P in the time interval tq, in the transformed/dynamic workspace 
which has q as its point of origin and the coordinates of every 
object p in every dimension are defined by the functions fi.  
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Algorithm 1 is applicable to dynamic temporal skylines by storing 
in the heap the entries according to their mindist in the dynamic 
workspace. Please refer to [20] for more details. The main 
modifications that are needed, so that Algorithm 1 can process the 
dynamic temporal skyline query, is the replacement of the 
temporal dominance checks in Lines 5 and 8 by dynamic temporal 
dominance checks, as they are set out in Definition 3. 

4.3 The Reverse Temporal Skyline Query 
As with the dynamic temporal skyline, the reverse temporal 
skyline evaluates the data objects with regard to a given query 
point q on a specified time interval tq. However, the main 
difference between these two queries is that the dynamic temporal 
skyline query can be seen as a query from the customer’s perspec-
tive whereas the reverse temporal skyline can be seen as a query 
from the company’s perspective (e.g. which customers –having 
their preferences represented by data points in the workspace– 
would be interested in a hotel room at 50 euros, at 600 meters from 
the city center, between October and May?). 

Four different algorithms for processing the reverse skyline query 
for traditional (non-temporal) data are proposed in [5] and [6], with 
the Branch & Bound Reverse Skyline (BBRS) algorithm [5] to be 
the one selected to serve as a backbone algorithm for extension in 
order to support the reverse temporal skyline. The BBRS algorithm 
is chosen for the simplicity of its implementation and its ability to 
run without the need to preprocess the dynamic skyline of every 
point in the dataset. The drawback of the BBRS in comparison to 
its three competitors is that it requires that the index be traversed 
once for every candidate reverse skyline point that is found in the 
final filtering step of the algorithm. This can be easily overcome 
by ensuring that the algorithm is accompanied by a buffer to hold 
the most frequently –or the least recently– used nodes of the index 
in memory for faster potential future usage. 

Algorithm 2: The reverse temporal skyline query () 

Input:   A dataset P, indexed using the 3D R-tree, 

    a query point q and a time interval tq. 

Output:  The reverse temporal skyline RSL(q, tq) of P 

 
1: 
 
2: 
3: 
4: 
5: 
 
 
6: 
7: 
 
8: 
 
 
9: 
10: 
11: 
12: 
 
13: 
14: 

RSL = H = ∅; // H is a heap 
FOR every 3D R-tree root entry e with validity  
 in the time interval te DO 
 IF te ∩ tq ≠ ∅ THEN insert (e, te ∩ tq) in H; 
WHILE H is not empty DO 
 Remove top entry (e, te) of H; 
 FOR every interval t ⊆ tq ∩ te in which e is  
  not globally temporally dominated by any  
  point in RSL DO 
  IF e is an intermediate entry THEN 
   FOR every child ee of e, with validity  
    in the interval tee with t ∩ tee ≠ ∅ DO 
    FOR every time interval t’ ⊆ t ∩ tee in 
     which ee is not globally temporally 
     dominated by any point in RSL DO 
     Insert (ee, t’) into H; 
  ELSE // e is a data point 
   Execute a range query based on e, q, t;  
   IF the range query is empty in any time  
    interval t’ ⊆ t THEN 
    Insert (e, t’) into RSL; 
RETURN RSL; 

Algorithm 2: The reverse temporal skyline query. 

The pseudo code of the proposed algorithm is illustrated in 
Algorithm 2. The algorithm in Lines 5 and 8 makes global 
temporal dominance checks according to the following definition. 

Definition 6 - Global Temporal Dominance: Given a time-va-
rying point dataset P in a d-dimensional space D and a query point 
q (q1, ..., qd) ∈ D with validity in the time interval tq, a point p (p1, 
..., pd) ∈ P with validity in the time interval tp globally temporally 
dominates another point r (r1, ..., rd) ∈ P with validity in the time 
interval tr with regard to q in the non-null time interval t if and 
only if (1) t is the non-null intersection between the time intervals 
tp, tr and tq, (2) ∀ i ∈ {1, ..., d}: (pi − qi)(ri − qi) > 0, (3) ∀ i ∈ {1, 
..., d}: |pi − qi| ≤ |ri − qi|, and (4) ∃ j ∈ {1, ..., d}: |pj − qj| < |ri − qj|.  

On the basis of the definition and of the example of Figure 3, it 
can be said that the point g globally temporally dominates the 
point j in the time instant 5.  

The global temporal dominance checks in the algorithm help with 
the pruning of intermediate index nodes (and data points) which 
cannot store (or be, respectively) reverse temporal skyline points. 
The first ten lines of the algorithm are executed in a manner 
similar to Algorithm 1 for the temporal skyline. However, for 
every point e with validity te overlapping the time interval tq of the 
query q that is not globally temporally dominated in a time interval 
t ⊆ te ∩ tq, a further examination is required. This examination is 
performed in Lines 11-12 of the algorithm by issuing a range 
query, e being in the centre of the range window and q in its 
corner, similarly to that illustrated in grey around the data point g 
in Figure 3. As [5] shows for the case of non-temporal data, if this 
range query returns no data point for a time interval t' ⊆ t, then e is 
a reverse temporal skyline point with regard to q in t'. Therefore, in 
this case in Line 13 of the algorithm the tuple (e, t') is inserted into 
the RSL(q, tq) list.  

In the reverse skyline query of Figure 3 with regard query point  
q (50, 600) and time instant 5, the data entries which are valid and 
not globally temporally dominated by any other point in this 
instant are a, i, h, b, d, and e. However, after performing the range 
query checks of Lines 11-12 of the algorithm, only the first four of 
these points is found to belong to the reverse temporal skyline. 

The handling of bi-temporal data can be treated in a manner analo-
gous to the temporal skyline query, by performing global temporal 
dominance checks in every time dimension independently. 

5. EXPERIMENTAL STUDY 
The proposed query algorithms were implemented in Java (JDK 
version 8). The 3D R-tree implementation is based on the R*-tree 
implementation that can be downloaded from the ChoroChronos 
portal1, with the operational modification to preferably select time 
dimension splitting (time-split) in the case of an overflowing tree 
node split. The workstation that was used for evaluation was 
equipped with Intel I7 8GB RAM and Windows 10 Pro 64-bit.  

The experiments used two datasets: a synthetic dataset constructed 
from 1,000,000 uniformly distributed time-varying two-
dimensional points with a uniformly distributed time interval 
validity of a maximum of 20% of the lifetime of the scenario, 
which is 1,000 time instants; and the real-life Major Hotel Chain 
dataset [3] with 147,029 bookings collected from five U.S. hotels, 

                                                                 
1 http://chorochronos.datastories.org 
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of which 100,000 were selected randomly. The construction of a 
two-dimensional point for every single booking record considered 
the Nightly_Rate column, plus a uniformly distributed artificial 
column of values between 0 and 100, representing for example 
customer rating scores. Every booking’s time validity interval is 
the combination of the Check_In_Date and Check_Out_Date 
columns as they are given by the data provider. The lifetime of the 
scene is 56 distinct time instants, i.e. 56 dates. 

Every experiment was repeated 10 times and the average value of 
every measured parameter was calculated. As with the dynamic 
and reverse temporal skyline queries, at every run a different 
randomly selected query point was used. In the following, unless 
otherwise stated, the findings of the performance investigation of 
the proposed query processing algorithms are qualitatively compa-
rable, whether synthetic or real data are used, whence the decision 
for partial depiction. Four different values are considered for the 
file system page size, i.e. 1Kb, 2Kb, 4Kb and 8Kb. The 3D R-tree 
node size is set to be equal to the page size. To get a crystal-clear 
view on the algorithms’ performance, no buffer is introduced to 
hold any 3D R-tree node in main memory during the experiments. 

  
 (a) (b) 

Figure 6: The 3D R-tree index size in a number of nodes, (a) for the 
synthetic dataset, and (b) for the real dataset. 

The graphs in Figure 6 illustrate the 3D R-tree index size for the 
synthetic (left) and real (right) datasets. The index size was 
measured at every 20% intervals of the data inserted. These results 
help to measure the percentage of the index that is accessed when 
processing the static and dynamic temporal skyline queries in the 
subsequent experiments, since every execution of their algorithms 
traverses the 3D R-tree only once. 

  
 (a) (b) 

Figure 7: (a) The time cost, and (b) the Ι/Ο cost, for executing the 
temporal skyline query algorithm for the synthetic dataset. 

The graphs in Figure 7 illustrate the time-cost in seconds (left) and 
the I/O cost in page accesses (right) for answering the temporal 
skyline query using the synthetic dataset. The query is executed at 
every 20% intervals of the data inserted, in every case for a time 
interval equal to the lifespan of the whole scenario, the skyline is 
thus computed for every time instant in the lifetime of the scene. 
By comparing the I/O cost to answer the query and the correspon-
ding index size shown in Figure 6(a), it is concluded that the 
temporal skyline algorithm accesses about 8% to 23% of the nodes 
of the index. This cost is justified by the large number of the 1,000  

  
 (a) (b) 

Figure 8: (a) The time cost, and (b) the Ι/Ο cost, in both cases for 
executing the temporal skyline query algorithm for the real dataset. 

time instants for which the skyline is computed with only a single 
tree traversal using the proposed Algorithm 1. 
The graphs in Figure 8 illustrate the time (left) and the I/O (right) 
cost for answering the temporal skyline query using the real-life 
dataset. The query is executed again for all instants in the lifetime 
of the whole scene. Since the real dataset scene lifetime is much 
smaller than that of the synthetic dataset, the algorithm using the 
real dataset provides relatively faster answers due to much fewer 
temporal dominance checks.  
A comparison of the I/O cost for answering the temporal skyline 
query using the real dataset with the corresponding index size 
shown in Figure 6(b) indicates that the proposed query algorithm 
appears to accesses about 3% to 19% of the index. This percentage 
represents (as in the case of the synthetic dataset) a zone of tree 
nodes accessed by the algorithm that have MBRs located closely to 
the origin point O of the workspace.  

  
 (a) (b) 

Figure 9: (a) The time cost, and (b) the Ι/Ο cost, for executing the 
dynamic temporal skyline query algorithm for the synthetic dataset. 

The graphs in Figure 9 show the time (left) and the I/O (right) cost 
of the execution of the dynamic temporal skyline query algorithm 
using the synthetic dataset. The validity of every query point is set 
to be equal to the lifetime of the whole scene. Supporting this 
"dynamic" query incurs an expected cost that is larger than the cost 
of the corresponding "static" temporal skyline query. This cost is 
incurred because the corresponding algorithm accesses a larger 
portion of the dataset as the result of the fact that the reference 
query point is not always on a corner of the workspace (as it would 
be with the ordinary temporal skyline query). 

  
 (a) (b) 

Figure 10: (a) The time cost, and (b) the Ι/Ο cost, for executing the 
reverse temporal skyline query algorithm for the synthetic dataset. 
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The last graphs in Figure 10 show the time (left) and I/O (right) 
cost for executing the reverse temporal skyline query algorithm 
using the synthetic dataset. The expected increase in cost in 
comparison to the dynamic temporal skyline, even if both queries 
access quite similar parts of the data space when using the same 
query points q, is due to the additional overhead of the reverse 
temporal skyline because of the empty/boolean range query 
executed by Algorithm 2 in Line 11.  

All the experiments indicate that the computation of a temporal 
skyline-based query for the whole domain of the time dimension is 
a costly task, with the worst performance when every point in the 
dataset is active for a time interval which does not overlap with the 
time interval of any other point in the dataset. In this case all the 
data belong to the temporal skyline; therefore the algorithms will 
need to access all the nodes of the index. By contrast, when all the 
points in the dataset have identical time intervals, the performance 
of the temporal skyline-based algorithms coincides with the 
performance of the corresponding algorithms for traditional (non-
temporal) data.  

6. CONCLUSION 
The skyline query is a decision support mechanism which retrieves 
the value-for-money options of a dataset by identifying the objects 
which present the optimal combination of the characteristics of the 
dataset. This is the first attempt to involve the time factor, while 
optimizing the skyline operator and its dynamic and reverse skyli-
ne variants. This work should hopefully pave the way for the con-
struction of other solutions for processing efficiently skyline-based 
queries for a variety of temporal and bi-temporal data applications. 
The next step is to investigate the impact of the temporal indexing 
method on the cost performance of queries, through the performan-
ce comparison of indexing methods or by proposing new ones, and 
to investigate the impact on query execution performance in the 
case of many objects with a relatively small or large time interval 
lifetime. Future research needs also to consider the introduction of 
efficient algorithms for processing extensions of other skyline 
query variants that will be applicable to temporal data. 
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