
A Robust Watermarking Scheme for

Relational Databases

Theodoros Tzouramanis

Department of Information & Communication Systems Engineering,

University of the Aegean,

Karlovassi, Samos, 83200, Greece

ttzouram@aegean.gr

Abstract—Research into the issue of the rights protection of

digital data is of critical importance since legal measures have

proved ineffective against digital piracy. Digital watermarking

tops the list of technical countermeasures. Its process involves the

incorporation of a set of some data in the item to be protected;

this set of data is called watermark. The accuracy of the item is

slightly degraded but the watermark acts as a seal that

henceforth identifies the intellectual owner. This paper proposes

a novel watermarking scheme for relational data which is

efficient against a range of attacks that may be issued to remove

or destroy the watermark. The paper provides experimental

results for a variety of parameter settings, revealing the

robustness of the proposed scheme in numerous possible attacks.

Keywords-digital rights protection; digital crime and forensics;

relational databases; robust digital watermarking method.

I. INTRODUCTION

The advance of digital communications and the internet has
opened new horizons in the social and business domain and has
re-defined traditional perceptions of fields such as trade,
banking and social welfare. On the other hand, the exponential
increase of internet users, together with the accessibility of
technological knowledge on a scale that makes it impossible to
control, have led to new proportions of crime. A major
weakness of digital technology is how easily unauthorized and
illegal reproduction and distribution of digital objects is
achieved and this activity is threatening to become the worst
enemy of the digital era [1].

Watermarking adds a level of protection to the copyright of
digital assets. It is the process of making deliberate alterations
in a digital object, providing that they can be detected in the
future. This requirement is meant to determine the paternity of
the object. Watermarking is based on the existence of a region
that can harbour noise in the object, inside which it is possible
to produce small changes that degrade slightly the object with-
out, however, causing damage to its fundamental attributes.

The deliberate alterations to the digital object are the marks
and the set of embedded marks is the watermark. The marks
are applied by an encoder. The detection of the watermark is
achieved through the use of a key. Since the term digital
watermarking was coined in 1993 when [2] presented two
techniques to hide data in images, a large number of water-
marking methods has been proposed for multimedia [3], digital
documents [4], software [5] and, more recently, databases [6].

Two categories, depending on application, distinguish
watermarks: robust watermarks for ownership verification and

fragile watermarks for tamper detection. The purpose of a
robust watermark is to resist a variety of attacks and legitimate
users’ data modifications, and categorically determines
intellectual property. The purpose of a fragile watermark is for
it to be damaged or destroyed by even the slightest data
manipulation, thus determining categorically (and possibly lo-
calizing) any attack directed at the integrity of a digital object.

In the context of databases, the copyright protection is
essential where it concerns sensitive data or data to be sold
from a collecting institution A to an institution B (outsourcing),
for uses such as data mining. Independently of the sale,
institution A retains the copyright, while institution B holds the
right to use, but not to sell the data to another institution.

The main contribution of this paper is the proposition of a
novel watermarking scheme for numeric database attributes
which is efficient in defeating a range of attacks that may be
used to remove or destroy the mark. The proposed scheme is
multipurpose because it can be used for both watermarking
(i.e., the same bit string is embedded and detected in every
database copy) and fingerprinting (i.e., a different bit string is
embedded and detected in each database copy). This paper
focuses on studying the performance of the proposed model as
a watermarking scheme. The watermark might be any digital
object related to the underlying data, for example an image, a
logo, a text message, a sound, a speech signal, etc. The
encoding algorithm can be applied to each tuple independently,
therefore, the proposed method has the property of incremental
updateability, i.e., the watermarked database can support
normal user modifications (insertions, deletions and updates)
by simply applying the encoding algorithm to those involved
tuples, without affecting any other ones.

The paper presents experimental results for a variety of
parameter settings that show that the method can thwart
efficiently a number of possible attacks, pointing to its practical
robustness in real-world database watermarking applications.

Section II discusses previous work in watermarking
relational data and draws a list of possible attacks against a
relational database. Section III introduces the notations and
parameters used in the paper. Section IV defines and describes
the proposed method. Section V provides a brief discussion on
the efficiency of the proposed method in real-world database
applications, in comparison to the efficiency of other existing
watermarking techniques. Section VI reports on an extensive
experimental performance analysis of watermark tolerance to
several possible attacks against the database. Section VII
summarizes and suggests directions for further research.

6th International Conference on Internet Technology and Secured Transactions, 11-14 December 2011, Abu Dhabi, United
Arab Emirates

978-1-908320-00-1/11/$26.00 ©2011 IEEE 783

II. RELATED WORK AND POTENTIAL ATTACKS

In the rich body of literature on watermarking multimedia
data, most of the techniques were initially developed for still
images [3] and later extended to video and audio sources [7].
These methods do not apply in the context of relational data
because an important parameter in their operating lies in the
fact that multimedia and software objects are of value only
when they are entire: it is not possible to maintain the
usefulness of the objects if parts are arbitrarily removed from
them or added to them. In the case of databases, the insertions,
deletions and updates of tuples constitute the more familiar
processes in the framework of their operation. Also, in a
database relation every tuple is a separate object (entity) and
should be protected independently.

The fundamental objective of watermarking methods for
relational data is to deliver efficient performance with respect
to the following important metrics:

• the storage cost for the maintenance of the secret keys
and other useful information (if any) that are required
to maintain secrecy for the detection phase,

• the time cost required to embed the watermark and
detect it, subsequently, in a suspicious relation,

• the ability of a relation to remain watermarked after
modification operations (insertions, updates and
deletions of database tuples), and,

• the sensitivity of the method to malicious attacks.

Perhaps the most well-known robust watermarking scheme
for relational data is the one proposed in [8] whereby a small
portion of numeric data is changed according to a secret key in
such a way that this change can be detected for the purpose of
ownership proof. Since the method just embeds a meaningless
watermark, so that it can only determine whether the database
is indeed watermarked, it cannot be used for meaningful
embedding information. Another drawback is that a very high
or very low percentage of marks has to be detected in a
suspicious database to verify ownership, otherwise the method
cannot decide whether the “unlike” watermark is a result of an
attack or because no certain watermarks exists. This work has
been extended in [9, 10] to allow meaningful multiple-bit
watermarks to be embedded as well.

Another popular robust multibit watermark scheme for
numeric data is proposed in [11] in which the tuples are
securely divided into nonintersecting subsets. A single
watermark bit is embedded into each subset, by modifying the
distribution of tuple values. However, the capacity of the
watermark is limited and the method has to record an extra
subset classifying information, which is much larger than the
size of the watermark, and safe storage, as well as space
needed, are at question. Also, the scheme is not suitable for
database relations that need frequent updates, since frequent
data modifications may destroy the watermark and it is very
expensive for the watermarking method to re-watermark
modified database relations. Reference [12] extended this
work, making it resistant to modifications and alteration
attacks, however the subset information that needs to be stored
and be given as input to the watermark detection process
remains high.

In [13] a gray image is used as a watermark. There is no
guarantee here that the marked data are still usable because the

method reset their whole decimal fraction: this alteration may
be so significant that normal application of data will be
affected. Also, in [14] a speech signal is used as a watermark.
Recent progress has expanded types of cover data to non-
numeric data [15], categorical data [16], XML data [17],
streaming data [18], data cubes [19], etc. Reference [6] makes a
detailed survey of the literature on watermarking methods for
relational data.

Regarding the robustness of a watermarking scheme, both
malicious actions and normal user modifications (insertions,
deletions and updates) should not wipe-off the watermark. Lets
assume Alice is a database owner and Mallory is a hypothetical
malicious user. Mallory plans to acquire rights over the
protected data. His best-known approaches to achieve this are
the following:

Data-weathering attacks: These attacks aim at the
destruction of the watermark by making changes in the values
of some of the least-significant bits of the data. Examples of
this attack are the deterministic bit-flipping (which is
performed by changing the value x of selected bits to 1 – x), the
randomized bit-flipping (which is performed by setting the
value of selected bits randomly to 0 or 1, according to the
independent toss of a fair coin), the bit-setting (which is
performed by setting the value of all the selected bits to 0 or 1,
independently of their original value) and the rounding of the
values of the watermarked data.

Subset-deletion attacks: Mallory deletes some tuples from
the watermarked relation, aiming, on the one hand, to ensure
that the remaining tuples acquire a high degree of importance
and, on the other hand, to ensure that the watermark detection
process will fail.

Pseudo-property statement attacks: Mallory incorporates
his own watermark Y' in the relation R that is already protected
by a legal watermark Y and claims that the watermark Y' pre-
existed the watermark Y, and thus that the data are his own
intellectual property. In most cases it is easy to defeat this
attack by detecting both watermarks and analysing the existing
distortion in the tuples that have been marked by both
watermark encoding procedures.

Comparative attacks: Mallory compares different versions
of the same relation that are likely to bring different
watermarks; on the basis of the differences between the
versions of the relation, he locates and removes the watermark.

III. NOTATIONS

Consider a database relation R which scheme is R(P, A0, A1,
…, As), where P is the primary key and Ai (i = 1, …, s) is a
numeric attribute candidate for watermarking. Let there be n
tuples in R, a fraction 1/γ of which will be used for the enco-
ding of the watermark, where γ is a user-defined parameter.

Since a robust watermarking scheme inevitably introduces
small distortions to the data, it is assumed that each attribute
value can tolerate modifications of at least ξ least-significant
bits. For the sake of simplicity we assume that ξ is a constant
number that is independent of the attribute value, although it
could depend on the number of bits of the binary representation
of the attribute value as well. Table I lists the notations and
parameters that will be used throughout in this paper.

784

TABLE I. NOTATIONS

Notation Explanation

R a database relation to be watermarked

R a tuple in R

r.P the primary key value of tuple r

r.Ai the numeric attribute Ai of tuple r, where i = 1, …, s

W the watermark, represented as a binary string of length L = |W| bits

Ξ the number of least-significant bits in an attribute

1/γ the fraction of tuples that are selected for watermarking

K a secret key

S() a cryptographic hash function

IV. THE PROPOSED APPROACH

In this section the proposed method for watermarking
numeric relational data is presented. Without loss of generality,
the watermark is assumed to be a meaningful binary string

(e.g., a logo) with length L ∈ ℵ which is a power of 21. An
example of a watermark is illustrated in Fig. 1. The watermark
is presented in its w0w1...wi...wL-1 binary string form, where
each black (white) square represents the bit value 1 (0) and the
position i of each watermark bit wi (i = 0, …, L - 1) appears
also in the figure, under its corresponding black or white
square. As Fig. 1 shows, it the rest of the paper the position of
each watermark bit will be represented in its binary form,
which has length log2L; these binary strings are called
watermark bits addresses (WBAs). For example, in Fig. 1, the
value of watermark bit w3 is 1, while its WBA is 011.

0 1 0 1 1 1 0 1

000 001 010 011 100 101 110 111

Figure 1. The binary representation of a watermark W.

On the other hand, the bits of every database attribute value
are separated into two groups. The first group contains the
most-significant bits (msbs) while the second group contains
the ξ least-significant bits (lsbs) of the data. Fig. 2 shows the
binary representation of an attribute value, where ξ = 4. It is
assumed that the msbs cannot be modified by Alice or Mallory
without rendering the data useless. The lsbs contain useful
information which however can be changed to a limited extent.
Therefore it is assumed that Mallory cannot reset all lsbs from
an attribute value, even if he is able to predict which the lsbs
are, without significantly degrading the value of the data.

1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

msbs lsbs

Figure 2. The binary representation of an attribute value with ξ = 4.

The proposed watermarking method consists of two algo-
rithms, the encoding and the decoding algorithm, which are
presented in the following subsections.

A. Watermark Encoding Algorithm

To simplify the discussion it is assumed that the database
relation R contains two attributes: the primary key R.P and a

1
 If the watermark's length is not a power of 2, some random bits can be added

appropriately, for example on its rightmost side.

secondary numeric attribute R.A. The encoding algorithm will
watermark the attribute R.A, although it can be easily extended
to spread the watermark among more than one attribute or
relation. Fig. 3 show a snapshot of this hypothetical relation R,
assuming that the attribute R.A has ξ = 4 lsbs.

Relation R

R.P
R.A

(ξ = 4)
R.A in binary form

watermarked R.A in
binary form

water
mark-
ed R.A

disto-
rtion
(%)

10 44,890 10101111 01011010 1010111101011100 44,892 0,00

13 2,842 00001011 00011010 00001011 00010011 2,835 0,24

14 65,000 11111101 11101000 11111101 11101001 65,001 0,00

18 570 00000010 00111010 00000010 00110000 560 1,75

25 3,672 00001110 01011000 00001110 01011001 3,673 0,02

28 20 00000000 00010100 00000000 00010100 20 0

42 7,625 00011101 11001001 00011101 11001111 7,631 0,07

47 54,540 11010101 00001100 11010101 00001010 54,538 0

48 3,608 00001110 00011000 00001110 00011011 3,611 0,08

51 2,544 00001001 11110000 00001001 11110111 2,551 0,27

Average distortion (%): 0,24

Figure 3. An example of a database relation R which is watermarked.

The encoding algorithm is illustrated in Algorithm I. As an
input, Alice has to provide the private key K, the number ξ of
lsbs and the fraction 1/γ of tuples which will be marked. In the
beginning, in Line 3, the algorithm selects the tuples that will
be marked. Α tuple r is selected if S(K || r.P) mod γ = 0, where
K is the secret key, P is the primary key of r, S() is a crypto-
graphically secured hash function S [20] (e.g. SHA) and ||
denotes concatenation. Due to the uniqueness of the primary
key, roughly one out of every γ tuples is selected for marking.

Every selected tuple r will be modified to store a part of the
watermark. In particular, one of the bits of its r.A value will be
selected to store a watermark bit w; in the sequel this bit of r.A
will be called marked bit. However, a set of log2L other r.A bits
will be chosen to store the WBA of w in the binary repre-
sentation of the watermark W (recall Fig. 1). This set of r.A bits
is called WBA set and it is consisting of msbs and/or lsbs of r.A.

1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0
r.B = 44,890

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1
r.B = 44,889

(virtual modification)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

msbs lsbs

Figure 4. Rearranging the lsbs of the r.B attribute value of tuple r.

Supposing Mallory is aware of this selection strategy, he
might attack randomly one or more lsb columns in order to
destroy the watermark. To defend against this, the encoding
algorithm, firstly, in Line 4 copies r.A into a temporary attribu-
te r.B and, secondly, in Line 5 it creates a secret rearrangement
for the lsbs of r.B value, making thus impossible for Mallory to
locate which lsb is the marked bit, with high probability. This
re-arrangement is carried out as follows: 1/ a hash digest S() for
each r.B lsb is calculated, based on the primary key, the secret
key and the position of each r.B lsb. 2/ the hash digests are sor-
ted in an increasing order and the r.B lsbs are re-arranged
according to this order. For example, let's assume that r.B's

785

value is the one that appears in Fig. 4 and that the hash digest
for the lsb in the 12

th
 / 13

th
 / 14

th
 / 15

th
 position of r.B is corre-

spondingly S(K||P||12) / S(K||P||13) / S(K||P||14) / S(K||P||15) =
FFFA3300 / AA4F4127 / 00001044 / F4450182. By sorting
these values, we find that the lsb value on the 12

th
 / 13

th
 / 14

th
 /

15
th
 position will be moved accordingly to the 12

th
 / 14

th
 / 15

th
 /

13
th
 position, i.e. the value of the lsb in the 12

th
 position will

not move, while all the other lsbs will be transferred into
different positions. Fig. 4 illustrates the final result of this
rearrangement. It must be stressed that these modifications in
the R.B attribute values do not harm the original data, which
have been kept safe in the R.A attribute.

Algorithm I: the Encoding() operation

Input: a relation R, the watermark W, the secret key K
and the parameters • and • (which are known only
to the database owner).

Output: the watermarked relation R, the lsb column of the
rearranged version of R.A that was selected per
tuple to store a watermark bit w, the (msbs and
lsbs) bit columns of the rearranged version of
R.A that store the WBA set of w.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

Add the temporary attributes B and C into R;

 // R.A, R.B & R.C share the same domain value

FOR each tuple r ∈ R DO {

 IF S(K || r.P) mod • = 0) THEN {

 r.B = r.A;

 Re-arrange bits in r.B;

 }

}

FOR i = 0 TO |R.B|-1 DO

 Calculate the distribution of 1s in every

 bit column i of R.B attribute;

Select the top log
2
|W| msbs columns of R.B with 1s

 distribution as closer as possible to 50%,

 to form the WBA columns set;

i = 1;

WHILE (i ≤ ξ) AND (the assignment from r.B to W

 is not uniform) DO {

 Replace a msb column in the WBA column set with

 the next available lsb column of r.B with 1s

 distribution as closer as possible to 50%;

 IF (the assignment from r.B to W is not

 uniform) THEN {

 FOR each tuple r ∈ R DO {

 IF S(K || r.P) mod • = 0) THEN {

 r.C = r.B;

 Modify appropriately the lsbs of r.C that

 belong to the WBA columns set in order

 to achieve uniform assignment of the

 data tuples to the watermark W's bits;

 }

 }

 }

 i++;

 }

IF S(K || r.P) mod • = 0) THEN {

 Mark r.C;

 Perform in r.C the opposite re- arrangement of

 bits that was performed in r.B value in Line 5;

 r.A = r.C;

 }

Drop the temporary attributes B and C from R;

END; // R is now watermarked

Algorithm I. The encoding algorithm.

The bits' re-arrangement process that appears in Line 5 can
be extended to re-arrange also the r.B's msbs as well, however
this is optional since it is assumed that any alteration attack on
the msbs will totally destroy the value of the data.

44% 59% 48% 61% 47% 39% 50% 52% 44% 51% 56% 50% 47% 61% 51% 48%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

msbs lsbs

Figure 5. The distribution of 1s in each bit column in the re-arranged R.B

attribute.

In the next step, the columns of the 'rearranged' r.B value
which will store a watermark bit w needs to be selected,
together with its WBA set. The bit columns of the rearranged
R.B attribute that will be selected to store the WBA set will be
the ones with bit values distribution of 1s and 0s as closer as
possible to 50%. To understand this necessity we may assume
an extreme case where this procedure mistakenly selects the
R.B bit columns that have 0% or 100% distribution of 1s.
Therefore, all tuples in R will have the same bit value for the
selected columns (for example, '0'/'1'/'1', correspondingly, in
the first/second/third selected column, assuming that log2L =3).
Therefore the selected columns will define the same WBA
columns set for every tuple (for example, '011' for every tuple)
and each tuple will be assigned to the same watermark bit w
(for example, to the watermark bit in the '011' position in the
watermark W). This strategy would produce an extremely
unbalanced assignment of data tuples to the watermark bits; in
particular, all the tuples would point to the same watermark bit.
Fig. 5 shows the distribution of 1s for a hypothetical example
of a rearranged attribute R.B with data values to a maximum
length of 16 bits (please recall that rearrangement might have
been performed also in the msbs of R.B).

Therefore, in Line 8, the encoding algorithm selects
separately the msbs columns with 1s distribution that is as
closer as possible to 50%. Regarding the example of Fig. 5,
assuming that three bits of R.B are required for storing a WBA,
the algorithm will select the set of msbs in columns: 6

th
, 11

th

and 9
th
, starting by the column with 1s distribution closer to

50%. The marked bit, however, can be anyone of the lsbs; for
the running example we may randomly select the bit column in
the 12

th
 position. The positions of the selected R.B bit columns

need to be stored in a safe place since they have to be provided
as an input to the decoding algorithm, which will be presented
in the next subsection.

 P: 10

0 1 0 1 1 1 0 1

000 001 010 011 100 101 110 111

 51

 47 18 25

 42 28 13 48 14 10

0 1 0 1 1 1 0 1

000 001 010 011 100 101 110 111

 (a) (b)

Figure 6. (a) A tuple r with primary key r.P = 10 is attached to a watermark

bit, and (b) every data tuple in R is attached to a watermark bit.

In the next step we shall use the selected WBA columns set
to actually route every tuple (using this set of bits) to point to a
specific watermark bit. In the rearranged r.B example of Fig. 4,
we may see that the binary string which is constructed by the
data bits in the 6

th
, 11

th
 and 9

th
 bit columns is the '111'. As it is

illustrated in Fig. 6a, this value directs the tuple to the 7
th

position of the watermark. For illustrative purposes the tuple’s
primary key is also “attached” on top of this watermark bit.
Performing the same operation for each tuple of the relation R
of Fig. 3, the result may look like the one in Fig. 6b.

786

In the next step, in Line 10, it is checked if the database
tuples that will be marked, have been distributed uniformly to
the watermark bits. For example, assuming that g tuples will be

marked, this step checks if at least g/L database tuples have
been assigned to each one of the L watermark bits. The goal
here is to assign an almost equal number of tuples to each
watermark bit. If this is not the case (an example appears in

Fig. 7a), and if ξ ≥ 1 then in Line 11 the last selected msb
(according to the procedure described in Line 8) is replaced

with one lsb (since ξ ≥ 1, we have at least one lsb). Afterwards,
it is checked again if the tuple distribution to the watermark
bits is uniform. The lsb that Line 11 chooses is the one with
distribution of 1s as close as possible to 50% among the lsbs.
In our running example of Fig. 5 this step would be translated
into a replacement of the 9

th
 bit column of R.B with the 14

th
 bit

column, which is one of the rearranged R.B lsb columns.

 ���� ����

 ���� ���� ���� ���� ���� ����

 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� re-arrangement ���� ���� ���� ���� ���� ���� ����

0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Figure 7. Modifying one lsb address bit.

In Line 12, if the tuples still have not been assigned
uniformly to the watermark bits (like in the example of Fig.
7a), the algorithm in Line 16 will try to achieve this by
modifying accordingly the lsb(s) that participate in the WBA
group. The goal is to transfer some tuples from watermark bits
with too much tuples to watermark bits with less tuples, by
modifying the selected R.B lsb(s). If this will still not produce a
uniform tuple distribution, then (in Line 12 again) if there are
still available lsbs for selection, the previous step is repeated
and one more msb is replaced by the next available lsb. In the
example of Fig. 5, since ξ = 4, in this step we would replace the
11

th
 (msb) bit column by the 15

th
 (lsb) bit column of r.B.

We have to note that the more lsbs participate in the
WBAC columns set, the further away we can move a tuple
from one watermark bit to another, e.g. if one lsb participates
in the WBAC set, then every tuple can move one position on
the left or on the right, depending on the original value of the
selected lsb (i.e., if necessary, we may change the value of the
lsb from '1' to '0', or vice-versa, thus moving the tuple from one
position to another). However, if the WBAC set is constituted
of one msb and two lsbs, then we may change the value of
these two lsbs (i.e., we may change the two selected lsbs
values, for example, from a hypothetical '01' value to '11' or
'00' or '10', thus moving the tuple from one position to three
other alternative neighbouring positions). Of course, only the
lsbs (if any) in the WBAC set are candidates for modification.
Fig. 8a shows a hypothetical tuple distribution with one msb
and two lsbs in the WBA columns set and Fig. 8b shows the
uniform final tuple distribution on the watermark bits after the
appropriate modification of the two lsbs in the WBA set.

 ����

 ���� ����

 ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� re-arrangement ���� ���� ���� ���� ���� ���� ���� ����

0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Figure 8. Modifying two lsbs address bits.

After the final assignment of each tuple to a watermark bit,
in Line 19 the marked bit of the tuple is modified by setting it
to be equal to the corresponding watermark bit. In the example
of Fig. 6a, since it had previously been decided that the marked
bit of the tuple would be the one in the 12

th
 column of the

rearranged R.B attribute, here the bit in the 12
th

 column will be
set to 1, which is the value of the corresponding watermark bit.
In Line 20, the (lsb) bits of the rearranged watermarked tuples
are re-ordered into their original positions, carrying any
modifications in the WBA bits set and in the marked bit.

B. Watermark Decoding

During the decoding process, an operation reverse to the
encoding operation is performed, to extract the watermark W'
from a suspicious database R' and compare it to the encoded
watermark W. Therefore, Alice has to recall the parameters K
and γ, together with the position of the WBAs columns set and
the position of the marked bit in the rearranged version of R.A
attribute. The algorithm is formally illustrated in Algorithm II.

Algorithm II: the Decoding() operation

Input: a suspicious relation R', the secret key K, the
parameter •, and the position of the WBAs columns
set together with the position of the marked bit
in the rearranged version of R.A.

Output: an extracted watermark W'

1:

2:

3:

4:

5:

6:

FOR each tuple r ∈ R DO

 IF S(K || r.P) mod • = 0) THEN {

 Re-arrange bits in r.A;

 Based on the positions of the WBA columns set,

 assign tuple r to a watermark bit of

 an unknown watermark W' with length

 equal to 2
|WBA column set|

 bits;

 }

 Based on the tuples which were assigned to each

 watermark W' bit and also based on a majority

 voting rule, construct the W' watermark;

RETURN W'; // W' is the extracted watermark

Algorithm II. The decoding algorithm.

In order to discover whether a tuple has been marked, in the
beginning, the decoding algorithm performs the same hash
operation as the encoding algorithm. If the tuple has been
marked, in Line 3 the decoding algorithm performs the same
re-arrangement of bits as in the encoding. The rearranged bits
that construct the WBA bits set are then extracted (for example,
'011') and on this basis the selected tuple is assigned to the
corresponding bit of an unknown watermark W' with length
equal to the number of columns in the WBA columns set. In
Line 5, the marked bit value is then extracted using a majority
voting rule, and it is stored to construct a possible watermark
W'. The watermark W' in the sequel needs to be compared to
the marked watermark W and if they match or are similar, then
ownership can be claimed. The similarity percentage between
W' and W which provides a certainty with regard to whether or
not the embedded watermark exists in the database is decided
by the user, however, our experiments indicated that a 75%
similarity between the extracted and the embedded watermark
is a good choice.

As an example, in Fig. 9 we may consider the tuple r with a
watermarked r.A value which in binary form is 10101111
01011100. We may assume also that the WBA column set is
constructed by the 6

h
, 15

th
 and 14

th
 columns of the appropria-

787

tely rearranged r.A attribute and that also the marked bit is in
the 12

th
 column. The rearranged version of r.A has then to be

constructed, which is depicted in Fig. 9. We now use the WBA
column set {6, 15, 14} to get the address to the watermark bit:
'101'. We also retrieve the marked bit from the 12

th
 column to

get the watermark bit value: 1. Therefore, the watermark bit in
the (101)2 = 5

th
 position of W' should have value 1.

1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0
r.A = 44,890

(virtual modification)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0
r.A = 44,892

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

msbs lsbs

Figure 9. Rearranging the lsbs of the r.A attribute value of tuple r.

If the inspected database has been maliciously modified,
two different tuples assigned to the same watermark bit may
have different marked bit values. To deal with this problem the
decoding algorithm in Line 5 uses a majority voting rule of 1s
or 0s, in order to estimate the correct value of the assigned
watermark bit. It does so by creating a counter for every
watermark bit which is incremented if a tuple assigned to this
watermark bit indicates that the watermark bit's value should
be 1 or decremented if the watermark bit's value should be 0.
Once all tuples have been processed, the watermark bit's value
is set to 1 if the counter is positive and greater than a specified
threshold value, or it is set to 0 if its counter is negative and
smaller than the negative threshold value; otherwise the
watermark bit has an unknown value.

V. DISCUSSION

A. Encoding by grouping without the need to store large

group-related information

The proposed scheme embeds the watermark on the group
basis. The tuples are uniformly divided into |W| groups, using a
mixed sequence of log2|W| msbs and lsbs of the attribute that
will be watermarked and, afterwards, one bit of watermark
information is stored in each group. Therefore, the only infor-
mation which needs to be saved in a safe storage regarding this
process is log2|W| + 1 short integer values. It is obvious that a
great advantage of the proposed method against other group-
based watermarking techniques (such as [11, 12]) is that there
is no need to store large quantities of information related to the
constructed groups of tuples, like the number of groups, the
number of tuples in each group, the tuples that define the
borders of each group, the parameters of the function which
distributed the tuples in the groups, and any other related
information regarding the groups' content. Therefore the
proposed method offers an almost blind decoding process.

B. Database updates

If the need to update the watermarked database arises, it
will definitely affect the encoded watermark. To ensure the
robustness of the watermark, we only need to watermark the
modified tuples in order to keep the distribution of tuples per
watermark bit as uniform as possible. This operation will not
affect the rest of tuples in the database. This is another
advantage of the proposed scheme over other similar schemes

which need to re-watermark the whole database relation or at
least the tuples that are enlisted in the same group with the
modified tuples (for example, [11, 21]).

C. Regarding databases without a primary key

In the proposed scheme it is assumed that the database to be
watermarked has a primary key. The primary key is used for
sorting the tuples' (msbs and) lsbs columns. For databases
without a primary key, we can easily incorporate the scheme in
[9], where a virtual primary key can be constructed from some
msbs of each tuple's attributes.

D. For error-intolerant databases

It is assumed that the database relation to be watermarked
has only numeric attributes and can tolerate small errors
introduced by watermark encoding algorithm. The proposed
scheme can easily be modified to be applicable if a database
relation does not have numeric attributes or if the numeric
attributes cannot tolerate any modifications. For example,
instead of changing the lsbs values, an extra attribute can be
created to store the watermark.

VI. EXPERIMENTS

Some experimental results that illustrate the robustness of
the proposed method are presented in the sequel. The
experiments we performed using database relations containing
two integer attributes with uniformly distributed synthetic data,
one attribute serving as the primary key and one as the attribute
to be watermarked. We ran experiments on an Oracle Database
11g Release 2 using Oracle Call Interface (OCI) connectivity
on a Windows 7 workstation. Each experiment cycle is compri-
sed of three phases: a watermark encoding operation, an attack
and a watermark decoding operation. The performed attacks
are the subset-deletion attack, the randomised-flipping attack
and the bit-setting attack. Comparative attacks are not effective
because we assume that the same watermark is embedded in
every version of a relation, therefore there is no meaning in the
search for differences between versions of the same watermar-
ked relation. The output of each experiment cycle is the
detection success rate, i.e. the fraction of bits of the extracted
watermark W' that match with the embedded watermark W.
Every experiment was repeated ten times, each time with a
different synthetic database.

A. The Role of the Size of the Watermark

In this experiment the parameters that appear in Table II
remain constant. We ran experiments with the following
watermark sizes (in bits): 1K, 2K, 4K, 8K, and 16K. The
benchmark database contains 10,000 tupes and we mark all of
them, i.e. γ = 1.

The first attack to be reported in Fig. 10a is the subset-
deletion attack. By deleting the 0.2 fraction of the tuples we
mean that the malicious user keeps only 80% of the initial
tuples. The results are somehow expected since each tuple in
the remaining database relation will make a correct match
because every tuple is marked and also 'untouched' by the
attack. For example if we delete the 0.7 fraction of the dataset,
the remaining database will contain about 3,000 tuples which
are uniformly distributed over the watermark bits. Thus, the

788

detection success rate is analogous to the number of
watermarked tuples attached to each watermark bit. Therefore,
the smaller the watermark, the higher the retrieval success, for
every fraction of deleted tuples. For example, for a small
watermark of 1K bits and by deleting 95% of the database
tuples, 40% of the watermark will survive.

TABLE II. PARAMETERS USED IN THE EXPERIMENTS STUDYING

THE ROLE OF THE SIZE OF THE WATERMARK.

Database size (in tuples): 10,000

Number ξ of lsbs: 6

Percentage of marked tuples: 100%

Number of bits modified by the attack per tuple (applies

only to randomized bit-flipping and bit-setting attacks):
2

Another interesting conclusion is regarding the importance
of the appropriate selection of the watermark size in respect to
the size of the database. For example, in the graph we may see
that for a watermark of 16K bits, the detection success rate is
low, mainly because the database size in tuples is smaller than
the watermark size in bits, which means that not all the
watermark bits were recorded into the database.

 (a) (b)
Figure 10. Evaluation of the robustness of the method with regard to the

watermark size in (a) subset-deletion attack, and (b) bit-setting attack.

The results in both randomized bit-flipping and bit-setting
attacks are quite similar; therefore, we illustrate in Fig. 10b
only the results for the bit-setting attack. When the fraction of
tuples modified by the attack is small, we get a high detection
success rate. However, when the tuples modified by the attack
increase, the graph indicates that the watermark size affects
almost linearly the watermark retrieval. Therefore, the higher
the percentage of tuples modified by the attack, the smaller the
watermark needs to be in order to survive.

B. The Role of the Number of Available lsbs

The values for the most important parameters are depicted
in Table III. The graph in Fig.11b for the randomized bit-
flipping attack shows that the efficiency of the watermarking
method improves slightly when the number ξ of lsbs increases.
This happens because the increase of available number ξ of
lsbs allows the watermarking method to spread the marked bit
and the WBA bits in more bit columns in order to achieve
uniform assignment of tuples in groups (Line 10 of the
encoding algorithm). Therefore, the more lsbs are used by the
encoding algorithm, the higher the percentage of the survived
watermark fraction is, since it is also more likely to not invert a
bit that is used by the algorithm. In the subset-deletion attack,
by definition the bits are not modified, therefore this
conclusion does not apply in Fig. 11a; hence the watermark
retrieval success rate depends only in the fraction of the tuples
modified by the attack.

TABLE III. PARAMETERS USED IN THE EXPERIMENTS STUDYING

THE ROLE OF THE NUMBER OF AVAILABLE LSBS.

Database size (in tuples): 10,000

Watermark size (in bits): 2,048

Percentage of marked tuples: 100%

Number of bits modified by the attack per tuple (applies

only to randomized bit-flipping and bit-setting attacks):

2

 (a) (b)

Figure 11. Evaluation of the robustness of the method with regard to the

number of available lsbs in (a) subset-deletion attack, and (b) randomized bit-

flipping attack.

C. The Role of the Percentage of Marked Tuples

The values for the most important parameters are depicted
in Table IV. We ran experiments for the following percentages
of marked tuples: 10%, 15%, 20%, 25% and 30%. The results
in Fig. 12a and Fig. 12b for this experiment are as expected.
The overall conclusion is that when everything else remains
unchanged, the percentage of the watermarked tuples affects
linearly the detection success rate of the watermark.

TABLE IV. PARAMETERS USED IN THE EXPERIMENTS STUDYING

THE ROLE OF THE PERCENTAGE OF MARKED TUPLES.

Database size (in tuples): 5,000

Number ξ of lsbs: 6

Watermark size (in bits): 1,024

Number of bits modified by the attack per tuple (applies

only to randomized bit-flipping and bit-setting attacks):

2

 (a) (b)

Figure 12. Evaluation of the robustness of the method with regard to the

percentage of the marked tuples in (a) subset-deletion attack, and, (b) bit-

setting attack.

D. The Role of the Ratio of Marked Tuples Over the

Watermark Size

Table V illustrates the selected values for the parameters
that were used in this experiment. Regarding to the number of
tuples in the database and the watermark size, the following
pair of values (in the <number of tuples, watermark size in
bits> form) were used: <2,500, 0.5K>, <5,000, 1K>, <10,000,
2K>, <20,000, 4K>, <40,000, 8K>.

789

TABLE V. PARAMETERS USED IN THE EXPERIMENTS STUDYING THE

ROLE OF THE RATIO OF MARKED TUPLES OVER THE

WATERMARK SIZE.

Number ξ of lsbs: 6

Percentage of marked tuples: 50%

Number of bits modified by the attack per tuple (applies

only to randomized bit-flipping and bit-setting attacks):

2

 (a) (b)
Figure 13. Evaluation of the robustness of the method with regard to the ratio

of marked tuples over the watermark size in (a) subset-deletion attack, and, (b)

randomized bit-flipping attack.

The graphs in Fig. 13a and Fig. 13b show that as long as
the ratio of marked tuples over the watermark size remains
constant, the algorithm's robustness remains constant as well.
The important consequence of this observation is that in case
we have a very large database to watermark, we can estimate
the robustness of the proposed algorithm with a random
fraction of the database tuples and a correspondingly smaller
random fraction of the watermark bits.

VII. CONCLUSION

The paper proposes an algorithm for watermarking numeric
relational data. The algorithm sorts the bits of each tuple in a
secret order and selects some of its data bits to route the tuple
to a specific watermark bit and one data bit to be marked by the
value of the assigned watermark bit. We showed that the
algorithm can be easily implemented. Experimental study
pointed to the robustness of the proposed scheme for a variety
of parameter settings and of possible attacks. The study shows
that the proposed scheme can be widely used in copyright
protection. It is worth noting that, for the sake of simplicity, in
the experimental study we did not adopt any error correction
mechanism [22] to make the watermark more robust against
the various kinds of attacks. In real-world applications it is
expected that this methodology will protect the embedded
information against noises; error correcting codes exist that
have a correcting ability up to approximately 25% of the
occurred errors [23].

In the future we aim at making correct watermark recovery
decisions in view of other types of attacks, for example, brute
force and mix-and-match attacks. We also plan to extent the
proposed method to be used as a fragile watermarking scheme
as well, for data authentication proposes, for example, by assig-
ning properly a single data tuple to each watermark bit. Further
research should also investigate new, non-numeric encoding
domains, that is, categorical and alphanumeric attributes.

ACKNOWLEDGMENT

The author would like to thank Mr. Konstantinos Robotis
for his invaluable contribution with regard to the
implementation and evaluation process of this work.

REFERENCES

[1] CBS News: "Digital piracy stronger than ever", Online link:
http://goo.gl/Ws2rZ, valid as of October 2010

[2] Tirkel A., Rankin G., Schyndel R., Ho W., Mee N., and Osborne C.:
"Electronic watermark". Proceedings of Digital Image Computing,
Technology and Applications, DICTA 93, pp. 666-673, 1993.

[3] Langelaar G.C., Setyawan I., and Lagendijk R.L.: "Watermarking digital
image and video data: a state-of-the-art overview". IEEE Signal
Processing Magazine, Vol.17, pp.20-46, 2000.

[4] Low S.H., Maxemchuk N.F. and Lapone A.M.: "Document
identification for copyright protection using centroid detection". IEEE
Transactions on Communications, Vol.46, No.3, pp.372-383, 1998.

[5] Collberg C.S, and Thomborson C.: "Watermarking, tamper- proofing
and obfuscation – tools for software protection". IEEE Transactions on
Software Engineering, Vol. 28, No. 8, pp. 735-746, August 2002.

[6] Halder R., Pal S., and Cortesi A.: "Watermarking techniques for relatio-
nal databases: survey, classification and comparison". Journal of Uni-
versal Computer Science (JUCS) Vol.16, No.21, pp.3164-3190, 2010.

[7] Boney L., Tewfik A.H., and Hamdy K.N.: "Digital watermarks for audio
signals". Proceedings of the International Conference on Multimedia
Computing and Systems, pp.473-480, 1996.

[8] Agrawal R., Haas P.J., and Kiernan J.: "Watermarking relational data:
framework, algorithms and analysis". The VLDB Journal, Vol. 12, pp
157-169, 2003.

[9] Li Y., Swarup V., and Jajodia S.: "Constructing a virtual primary key for
fingerprinting relational data". Proceedings of the ACM Workshop on
Digital Rights Management, pp. 133–141, 2003.

[10] Li Y., Guo H., and Wang S.: "A multiple-bits watermark for relational
data". Proceedings of the Principle Advancements in Database
Management Technologies, pp.1-22, 2010.

[11] Sion R., Atallah M.J., and Prabhakar S.: "Rights protection for relational
data". IEEE Trans. Knowl. Data Eng. Vol.16,No.12,pp.1509-1525, 2004

[12] Shehab M., Bertino E., and Ghafoor A.: "Watermarking relational
databases using optimization-based techniques". IEEE Trans. Knowl.
Data Eng. (TKDE), Vol. 20, No.1, pp.116-129, 2008.

[13] Zhang Z., Jin X., Wang J., and Li D.: "Watermarking relational database
using image". Proceedings of the Third International Conference on
Machine Leaning & Cybernetics, Vol.3, pp.1739-1744, Shanghai, 2004.

[14] Wang H., Cui X., and Cao Z.: "A Speech Based Algorithm for
Watermarking Relational Databases". Proceedings of the ISIP 2008,
pp.603-606, 2008.

[15] Al-Haj A., and Odeh A.: "Robust and blind watermarking of relational
database systems". Journal of Computer Science, Vol.4, pp.1024–1029,
2008.

[16] Sion R.: "Proving ownership over categorical data". Proceedings of
ICDE 2004, pp.584-596, 2004.

[17] Gross-Amblard D., "Query-preserving watermarking of relational
databases and Xml documents". ACM Trans. Database Syst. (TODS)
Vol.36, No.1, Article No.3, 2011.

[18] Sion R., Atallah M., and Prabhakar S., "Resilient rights protection for
sensor streams". Proceedings of the Very Large Databases Conference,
pp.732–743, 2004.

[19] Guo J., Li Y., Deng R. H., and Chen K.., "Rights protection for data
cubes". Proceedings of the ISC, pp.359–372, 2006.

[20] Schneier B.: Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, 1995.

[21] Sion R., Atallah M.J., and Prabhakar S., "On watermarking numeric
sets". Proceedings of the IWDW 2002, pp.130-146, 2002

[22] Ambroze A., Wade G., Serdean C., Tomlinson M., Stander J., and Borda
M., "Turbo code protection of video watermark channel". IEEE

Proceedings-Vision, Image and Signal Processing, Vol.148, No.1,
pp.54–58, 2001.

[23] Zhou X., Huang M., and Peng Z., "An additive-attack-proof
watermarking mechanism for databases' copyrights protection using
image". Proceedings of the SAC 2007, pp.254-258, 2007.

790

