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Abstract—Research into the issue of the rights protection of 

digital data is of critical importance since legal measures have 

proved ineffective against digital piracy. Digital watermarking 

tops the list of technical countermeasures. Its process involves the 

incorporation of a set of some data in the item to be protected; 

this set of data is called watermark. The accuracy of the item is 

slightly degraded but the watermark acts as a seal that 

henceforth identifies the intellectual owner. This paper proposes 

a novel watermarking scheme for relational data which is 

efficient against a range of attacks that may be issued to remove 

or destroy the watermark. The paper provides experimental 

results for a variety of parameter settings, revealing the 

robustness of the proposed scheme in numerous possible attacks. 

Keywords-digital rights protection; digital crime and forensics; 

relational databases; robust digital watermarking method. 

I. INTRODUCTION 

The advance of digital communications and the internet has 
opened new horizons in the social and business domain and has 
re-defined traditional perceptions of fields such as trade, 
banking and social welfare. On the other hand, the exponential 
increase of internet users, together with the accessibility of 
technological knowledge on a scale that makes it impossible to 
control, have led to new proportions of crime. A major 
weakness of digital technology is how easily unauthorized and 
illegal reproduction and distribution of digital objects is 
achieved and this activity is threatening to become the worst 
enemy of the digital era [1].  

Watermarking adds a level of protection to the copyright of 
digital assets. It is the process of making deliberate alterations 
in a digital object, providing that they can be detected in the 
future. This requirement is meant to determine the paternity of 
the object. Watermarking is based on the existence of a region 
that can harbour noise in the object, inside which it is possible 
to produce small changes that degrade slightly the object with-
out, however, causing damage to its fundamental attributes. 

The deliberate alterations to the digital object are the marks 
and the set of embedded marks is the watermark. The marks 
are applied by an encoder. The detection of the watermark is 
achieved through the use of a key. Since the term digital 
watermarking was coined in 1993 when [2] presented two 
techniques to hide data in images, a large number of water-
marking methods has been proposed for multimedia [3], digital 
documents [4], software [5] and, more recently, databases [6].  

Two categories, depending on application, distinguish 
watermarks: robust watermarks for ownership verification and 

fragile watermarks for tamper detection. The purpose of a 
robust watermark is to resist a variety of attacks and legitimate 
users’ data modifications, and categorically determines 
intellectual property. The purpose of a fragile watermark is for 
it to be damaged or destroyed by even the slightest data 
manipulation, thus determining categorically (and possibly lo-
calizing) any attack directed at the integrity of a digital object. 

In the context of databases, the copyright protection is 
essential where it concerns sensitive data or data to be sold 
from a collecting institution A to an institution B (outsourcing), 
for uses such as data mining. Independently of the sale, 
institution A retains the copyright, while institution B holds the 
right to use, but not to sell the data to another institution.  

The main contribution of this paper is the proposition of a 
novel watermarking scheme for numeric database attributes 
which is efficient in defeating a range of attacks that may be 
used to remove or destroy the mark. The proposed scheme is 
multipurpose because it can be used for both watermarking 
(i.e., the same bit string is embedded and detected in every 
database copy) and fingerprinting (i.e., a different bit string is 
embedded and detected in each database copy). This paper 
focuses on studying the performance of the proposed model as 
a watermarking scheme. The watermark might be any digital 
object related to the underlying data, for example an image, a 
logo, a text message, a sound, a speech signal, etc. The 
encoding algorithm can be applied to each tuple independently, 
therefore, the proposed method has the property of incremental 
updateability, i.e., the watermarked database can support 
normal user modifications (insertions, deletions and updates) 
by simply applying the encoding algorithm to those involved 
tuples, without affecting any other ones.  

The paper presents experimental results for a variety of 
parameter settings that show that the method can thwart 
efficiently a number of possible attacks, pointing to its practical 
robustness in real-world database watermarking applications. 

Section II discusses previous work in watermarking 
relational data and draws a list of possible attacks against a 
relational database. Section III introduces the notations and 
parameters used in the paper. Section IV defines and describes 
the proposed method. Section V provides a brief discussion on 
the efficiency of the proposed method in real-world database 
applications, in comparison to the efficiency of other existing 
watermarking techniques. Section VI reports on an extensive 
experimental performance analysis of watermark tolerance to 
several possible attacks against the database. Section VII 
summarizes and suggests directions for further research. 
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II. RELATED WORK AND POTENTIAL ATTACKS 

In the rich body of literature on watermarking multimedia 
data, most of the techniques were initially developed for still 
images [3] and later extended to video and audio sources [7]. 
These methods do not apply in the context of relational data 
because an important parameter in their operating lies in the 
fact that multimedia and software objects are of value only 
when they are entire: it is not possible to maintain the 
usefulness of the objects if parts are arbitrarily removed from 
them or added to them. In the case of databases, the insertions, 
deletions and updates of tuples constitute the more familiar 
processes in the framework of their operation. Also, in a 
database relation every tuple is a separate object (entity) and 
should be protected independently.  

The fundamental objective of watermarking methods for 
relational data is to deliver efficient performance with respect 
to the following important metrics:  

• the storage cost for the maintenance of the secret keys 
and other useful information (if any) that are required 
to maintain secrecy for the detection phase,  

• the time cost required to embed the watermark and 
detect it, subsequently, in a suspicious relation,  

• the ability of a relation to remain watermarked after 
modification operations (insertions, updates and 
deletions of database tuples), and, 

• the sensitivity of the method to malicious attacks. 

Perhaps the most well-known robust watermarking scheme 
for relational data is the one proposed in [8] whereby a small 
portion of numeric data is changed according to a secret key in 
such a way that this change can be detected for the purpose of 
ownership proof. Since the method just embeds a meaningless 
watermark, so that it can only determine whether the database 
is indeed watermarked, it cannot be used for meaningful 
embedding information.  Another drawback is that a very high 
or very low percentage of marks has to be detected in a 
suspicious database to verify ownership, otherwise the method 
cannot decide whether the “unlike” watermark is a result of an 
attack or because no certain watermarks exists. This work has 
been extended in [9, 10] to allow meaningful multiple-bit 
watermarks to be embedded as well.  

Another popular robust multibit watermark scheme for 
numeric data is proposed in [11] in which the tuples are 
securely divided into nonintersecting subsets. A single 
watermark bit is embedded into each subset, by modifying the 
distribution of tuple values. However, the capacity of the 
watermark is limited and the method has to record an extra 
subset classifying information, which is much larger than the 
size of the watermark, and safe storage, as well as space 
needed, are at question. Also, the scheme is not suitable for 
database relations that need frequent updates, since frequent 
data modifications may destroy the watermark and it is very 
expensive for the watermarking method to re-watermark 
modified database relations. Reference [12] extended this 
work, making it resistant to modifications and alteration 
attacks, however the subset information that needs to be stored 
and be given as input to the watermark detection process 
remains high. 

In [13] a gray image is used as a watermark. There is no 
guarantee here that the marked data are still usable because the 

method reset their whole decimal fraction: this alteration may 
be so significant that normal application of data will be 
affected. Also, in [14] a speech signal is used as a watermark. 
Recent progress has expanded types of cover data to non-
numeric data [15], categorical data [16], XML data [17], 
streaming data [18], data cubes [19], etc. Reference [6] makes a 
detailed survey of the literature on watermarking methods for 
relational data. 

Regarding the robustness of a watermarking scheme, both 
malicious actions and normal user modifications (insertions, 
deletions and updates) should not wipe-off the watermark. Lets 
assume Alice is a database owner and Mallory is a hypothetical 
malicious user. Mallory plans to acquire rights over the 
protected data. His best-known approaches to achieve this are 
the following:  

Data-weathering attacks: These attacks aim at the 
destruction of the watermark by making changes in the values 
of some of the least-significant bits of the data. Examples of 
this attack are the deterministic bit-flipping (which is 
performed by changing the value x of selected bits to 1 – x), the 
randomized bit-flipping (which is performed by setting the 
value of selected bits randomly to 0 or 1, according to the 
independent toss of a fair coin), the bit-setting (which is 
performed by setting the value of all the selected bits to 0 or 1, 
independently of their original value) and the rounding of the 
values of the watermarked data.   

Subset-deletion attacks: Mallory deletes some tuples from 
the watermarked relation, aiming, on the one hand, to ensure 
that the remaining tuples acquire a high degree of importance 
and, on the other hand, to ensure that the watermark detection 
process will fail.   

Pseudo-property statement attacks: Mallory incorporates 
his own watermark Y' in the relation R that is already protected 
by a legal watermark Y and claims that the watermark Y' pre-
existed the watermark Y, and thus that the data are his own 
intellectual property. In most cases it is easy to defeat this 
attack by detecting both watermarks and analysing the existing 
distortion in the tuples that have been marked by both 
watermark encoding procedures.  

Comparative attacks: Mallory compares different versions 
of the same relation that are likely to bring different 
watermarks; on the basis of the differences between the 
versions of the relation, he locates and removes the watermark. 

III. NOTATIONS 

Consider a database relation R which scheme is R(P, A0, A1, 
…, As), where P is the primary key and Ai (i = 1, …, s) is a 
numeric attribute candidate for watermarking. Let there be n 
tuples in R, a fraction 1/γ of which will be used for the enco-
ding of the watermark, where γ is a user-defined parameter. 

Since a robust watermarking scheme inevitably introduces 
small distortions to the data, it is assumed that each attribute 
value can tolerate modifications of at least ξ least-significant 
bits. For the sake of simplicity we assume that ξ is a constant 
number that is independent of the attribute value, although it 
could depend on the number of bits of the binary representation 
of the attribute value as well. Table I lists the notations and 
parameters that will be used throughout in this paper. 
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TABLE I.  NOTATIONS 

Notation Explanation 

R a database relation to be watermarked 

R a tuple in R 

r.P the primary key value of tuple r 

r.Ai the numeric attribute Ai of tuple r, where i = 1, …, s 

W the watermark, represented as a binary string of length L = |W| bits 

Ξ the number of least-significant bits in an attribute 

1/γ the fraction of tuples that are selected for watermarking 

K a secret key 

S() a cryptographic hash function 

IV. THE PROPOSED APPROACH 

In this section the proposed method for watermarking 
numeric relational data is presented. Without loss of generality, 
the watermark is assumed to be a meaningful binary string 

(e.g., a logo) with length L ∈ ℵ which is a power of 21. An 
example of a watermark is illustrated in Fig. 1. The watermark 
is presented in its w0w1...wi...wL-1 binary string form, where 
each black (white) square represents the bit value 1 (0) and the 
position i of each watermark bit wi (i = 0, …, L - 1) appears 
also in the figure, under its corresponding black or white 
square. As Fig. 1 shows, it the rest of the paper the position of 
each watermark bit will be represented in its binary form, 
which has length log2L; these binary strings are called 
watermark bits addresses (WBAs). For example, in Fig. 1, the 
value of watermark bit w3 is 1, while its WBA is 011.  

 

0 1 0 1 1 1 0 1 

000 001 010 011 100 101 110 111 

 
Figure 1.  The binary representation of a watermark W. 

On the other hand, the bits of every database attribute value 
are separated into two groups. The first group contains the 
most-significant bits (msbs) while the second group contains 
the ξ least-significant bits (lsbs) of the data. Fig. 2 shows the 
binary representation of an attribute value, where ξ = 4. It is 
assumed that the msbs cannot be modified by Alice or Mallory 
without rendering the data useless. The lsbs contain useful 
information which however can be changed to a limited extent. 
Therefore it is assumed that Mallory cannot reset all lsbs from 
an attribute value, even if he is able to predict which the lsbs 
are, without significantly degrading the value of the data.  

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

msbs lsbs 

 

Figure 2.  The binary representation of an attribute value with ξ = 4. 

The proposed watermarking method consists of two algo-
rithms, the encoding and the decoding algorithm, which are 
presented in the following subsections.  

A. Watermark Encoding Algorithm 

To simplify the discussion it is assumed that the database 
relation R contains two attributes: the primary key R.P and a 

                                                           
1
 If the watermark's length is not a power of 2, some random bits can be added 

appropriately, for example on its rightmost side. 

secondary numeric attribute R.A. The encoding algorithm will 
watermark the attribute R.A, although it can be easily extended 
to spread the watermark among more than one attribute or 
relation. Fig. 3 show a snapshot of this hypothetical relation R, 
assuming that the attribute R.A has ξ = 4 lsbs.  

Relation R 

R.P 
R.A 

(ξ = 4) 
R.A in binary form 

watermarked R.A in 
binary form 

water 
mark-
ed R.A 

disto-
rtion 
(%) 

10 44,890 10101111 01011010 1010111101011100 44,892 0,00 

13 2,842 00001011 00011010 00001011 00010011 2,835 0,24 

14 65,000 11111101 11101000 11111101 11101001 65,001 0,00 

18 570 00000010 00111010 00000010 00110000 560 1,75 

25 3,672 00001110 01011000 00001110 01011001 3,673 0,02 

28 20 00000000 00010100 00000000 00010100 20 0 

42 7,625 00011101 11001001 00011101 11001111 7,631 0,07 

47 54,540 11010101 00001100 11010101 00001010 54,538 0 

48 3,608 00001110 00011000 00001110 00011011 3,611 0,08 

51 2,544 00001001 11110000 00001001 11110111 2,551 0,27 

Average distortion (%): 0,24 

Figure 3.  An example of a database relation R which is watermarked. 

The encoding algorithm is illustrated in Algorithm I. As an 
input, Alice has to provide the private key K, the number ξ of 
lsbs and the fraction 1/γ of tuples which will be marked. In the 
beginning, in Line 3, the algorithm selects the tuples that will 
be marked. Α tuple r is selected if S(K || r.P) mod γ = 0, where 
K is the secret key, P is the primary key of r, S() is a crypto-
graphically secured hash function S [20] (e.g. SHA) and || 
denotes concatenation. Due to the uniqueness of the primary 
key, roughly one out of every γ tuples is selected for marking.  

Every selected tuple r will be modified to store a part of the 
watermark. In particular, one of the bits of its r.A value will be 
selected to store a watermark bit w; in the sequel this bit of r.A 
will be called marked bit. However, a set of log2L other r.A bits 
will be chosen to store the WBA of w in the binary repre-
sentation of the watermark W (recall Fig. 1). This set of r.A bits 
is called WBA set and it is consisting of msbs and/or lsbs of r.A. 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 
r.B = 44,890 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 
r.B = 44,889 

(virtual modification) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

msbs lsbs 

 

Figure 4.  Rearranging the lsbs of the r.B attribute value of tuple r. 

Supposing Mallory is aware of this selection strategy, he 
might attack randomly one or more lsb columns in order to 
destroy the watermark. To defend against this, the encoding 
algorithm, firstly, in Line 4 copies r.A into a temporary attribu-
te r.B and, secondly, in Line 5 it creates a secret rearrangement 
for the lsbs of r.B value, making thus impossible for Mallory to 
locate which lsb is the marked bit, with high probability. This 
re-arrangement is carried out as follows: 1/ a hash digest S() for 
each r.B lsb is calculated, based on the primary key, the secret 
key and the position of each r.B lsb. 2/ the hash digests are sor-
ted in an increasing order and the r.B lsbs are re-arranged 
according to this order. For example, let's assume that r.B's 
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value is the one that appears in Fig. 4 and that the hash digest 
for the lsb in the 12

th
 / 13

th
 / 14

th
 / 15

th
 position of r.B is corre-

spondingly S(K||P||12) / S(K||P||13) / S(K||P||14) / S(K||P||15) = 
FFFA3300 / AA4F4127 / 00001044 / F4450182. By sorting 
these values, we find that the lsb value on the 12

th
 / 13

th
 / 14

th
 / 

15
th
 position will be moved accordingly to the 12

th
 / 14

th
 / 15

th
 / 

13
th
 position, i.e. the value of the lsb in the 12

th
 position will 

not move, while all the other lsbs will be transferred into 
different positions. Fig. 4 illustrates the final result of this 
rearrangement. It must be stressed that these modifications in 
the R.B attribute values do not harm the original data, which 
have been kept safe in the R.A attribute. 

 

Algorithm I: the Encoding() operation 

Input: a relation R, the watermark W, the secret key K 
and the parameters • and • (which are known only 
to the database owner). 

Output:  the watermarked relation R, the lsb column of the 
rearranged version of R.A that was selected per 
tuple to store a watermark bit w, the (msbs and 
lsbs) bit columns of the rearranged version of 
R.A that store the WBA set of w. 

1: 

 

2: 

3: 

4: 

5: 

 

 

6: 

7: 

 

8: 

 

 

9: 

10: 

 

11: 

 

 

12: 

 

13: 

14: 

15: 

16: 

 

 

 

 

 

 

17: 

 

18: 

19: 

20: 

 

21: 

 

22: 

23: 

Add the temporary attributes B and C into R;  

  // R.A, R.B & R.C share the same domain value 

FOR each tuple r ∈ R DO { 

 IF S(K || r.P) mod • = 0) THEN {  

  r.B = r.A; 

  Re-arrange bits in r.B; 

 } 

} 

FOR i = 0 TO |R.B|-1 DO 

 Calculate the distribution of 1s in every  

  bit column i of R.B attribute; 

Select the top log
2
|W| msbs columns of R.B with 1s 

 distribution as closer as possible to 50%,  

 to form the WBA columns set; 

i = 1; 

WHILE (i ≤ ξ) AND (the assignment from r.B to W  

    is not uniform) DO { 

 Replace a msb column in the WBA column set with 

  the next available lsb column of r.B with 1s 

  distribution as closer as possible to 50%; 

 IF (the assignment from r.B to W is not  

  uniform) THEN { 

  FOR each tuple r ∈ R DO { 

   IF S(K || r.P) mod • = 0) THEN {  

    r.C = r.B; 

    Modify appropriately the lsbs of r.C that 

     belong to the WBA columns set in order 

     to achieve uniform assignment of the 

     data tuples to the watermark W's bits; 

    } 

   } 

  } 

 i++; 

 } 

IF S(K || r.P) mod • = 0) THEN {  

 Mark r.C; 

 Perform in r.C the opposite re- arrangement of  

  bits that was performed in r.B value in Line 5; 

 r.A = r.C; 

 } 

Drop the temporary attributes B and C from R;  

END;  // R is now watermarked 

Algorithm I. The encoding algorithm. 

The bits' re-arrangement process that appears in Line 5 can 
be extended to re-arrange also the r.B's msbs as well, however 
this is optional since it is assumed that any alteration attack on 
the msbs will totally destroy the value of the data.  

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 

44% 59% 48% 61% 47% 39% 50% 52% 44% 51% 56% 50% 47% 61% 51% 48% 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

msbs lsbs 

 

Figure 5.  The distribution of 1s in each bit column in the re-arranged R.B 

attribute. 

In the next step, the columns of the 'rearranged' r.B value 
which will store a watermark bit w needs to be selected, 
together with its WBA set.  The bit columns of the rearranged 
R.B attribute that will be selected to store the WBA set will be 
the ones with bit values distribution of 1s and 0s as closer as 
possible to 50%. To understand this necessity we may assume 
an extreme case where this procedure mistakenly selects the 
R.B bit columns that have 0% or 100% distribution of 1s. 
Therefore, all tuples in R will have the same bit value for the 
selected columns (for example, '0'/'1'/'1', correspondingly, in 
the first/second/third selected column, assuming that log2L =3). 
Therefore the selected columns will define the same WBA 
columns set for every tuple (for example, '011' for every tuple) 
and each tuple will be assigned to the same watermark bit w 
(for example, to the watermark bit in the '011' position in the 
watermark W). This strategy would produce an extremely 
unbalanced assignment of data tuples to the watermark bits; in 
particular, all the tuples would point to the same watermark bit. 
Fig. 5 shows the distribution of 1s for a hypothetical example 
of a rearranged attribute R.B with data values to a maximum 
length of 16 bits (please recall that rearrangement might have 
been performed also in the msbs of R.B). 

Therefore, in Line 8, the encoding algorithm selects 
separately the msbs columns with 1s distribution that is as 
closer as possible to 50%. Regarding the example of Fig. 5, 
assuming that three bits of R.B are required for storing a WBA, 
the algorithm will select the set of msbs in columns: 6

th
, 11

th
 

and 9
th
, starting by the column with 1s distribution closer to 

50%. The marked bit, however, can be anyone of the lsbs; for 
the running example we may randomly select the bit column in 
the 12

th
 position. The positions of the selected R.B bit columns 

need to be stored in a safe place since they have to be provided 
as an input to the decoding algorithm, which will be presented 
in the next subsection. 

 

       P: 10 

0 1 0 1 1 1 0 1 

000 001 010 011 100 101 110 111       

 

    51    

    47  18 25 

 42  28 13 48 14 10 

0 1 0 1 1 1 0 1 

000 001 010 011 100 101 110 111  

 (a) (b) 

Figure 6.  (a) A tuple r with primary key r.P = 10 is attached to a watermark 

bit, and (b) every data tuple in R is attached to a watermark bit. 

In the next step we shall use the selected WBA columns set 
to actually route every tuple (using this set of bits) to point to a 
specific watermark bit. In the rearranged r.B example of Fig. 4, 
we may see that the binary string which is constructed by the 
data bits in the 6

th
, 11

th
 and 9

th
 bit columns is the '111'. As it is 

illustrated in Fig. 6a, this value directs the tuple to the 7
th
 

position of the watermark. For illustrative purposes the tuple’s 
primary key is also “attached” on top of this watermark bit. 
Performing the same operation for each tuple of the relation R 
of Fig. 3, the result may look like the one in Fig. 6b. 
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In the next step, in Line 10, it is checked if the database 
tuples that will be marked, have been distributed uniformly to 
the watermark bits. For example, assuming that g tuples will be 

marked, this step checks if at least g/L database tuples have 
been assigned to each one of the L watermark bits. The goal 
here is to assign an almost equal number of tuples to each 
watermark bit. If this is not the case (an example appears in 

Fig. 7a), and if ξ ≥ 1 then in Line 11 the last selected msb 
(according to the procedure described in Line 8) is replaced 

with one lsb (since ξ ≥ 1, we have at least one lsb). Afterwards, 
it is checked again if the tuple distribution to the watermark 
bits is uniform. The lsb that Line 11 chooses is the one with 
distribution of 1s as close as possible to 50% among the lsbs. 
In our running example of Fig. 5 this step would be translated 
into a replacement of the 9

th
 bit column of R.B with the 14

th
 bit 

column, which is one of the rearranged R.B lsb columns.  
 

  ����            ����      

 ���� ���� ����   ����        ���� ����     

 ���� ���� ����   ����      ���� ���� ���� ����   ���� ���� 

���� ���� ���� ����  ���� ���� ���� re-arrangement ���� ���� ���� ����  ���� ���� ���� 

0 1 0 1 1 1 0 1 
    

0 1 0 1 1 1 0 1 

000 001 010 011 100 101 110 111     000 001 010 011 100 101 110 111 
 

Figure 7.  Modifying one lsb address bit. 

In Line 12, if the tuples still have not been assigned 
uniformly to the watermark bits (like in the example of Fig. 
7a), the algorithm in Line 16 will try to achieve this by 
modifying accordingly the lsb(s) that participate in the WBA 
group. The goal is to transfer some tuples from watermark bits 
with too much tuples to watermark bits with less tuples, by 
modifying the selected R.B lsb(s). If this will still not produce a 
uniform tuple distribution, then (in Line 12 again) if there are 
still available lsbs for selection, the previous step is repeated 
and one more msb is replaced by the next available lsb. In the 
example of Fig. 5, since ξ = 4, in this step we would replace the 
11

th
 (msb) bit column by the 15

th
 (lsb) bit column of r.B. 

We have to note that the more lsbs participate in the 
WBAC columns set, the further away we can move a tuple 
from one watermark bit to another, e.g. if one lsb participates 
in the WBAC set, then every tuple can move one position on 
the left or on the right, depending on the original value of the 
selected lsb (i.e., if necessary, we may change the value of the 
lsb from '1' to '0', or vice-versa, thus moving the tuple from one 
position to another). However, if the WBAC set is constituted 
of one msb and two lsbs, then we may change the value of 
these two lsbs (i.e., we may change the two selected lsbs 
values, for example, from a hypothetical '01' value to '11' or 
'00' or '10', thus moving the tuple from one position to three 
other alternative neighbouring positions). Of course, only the 
lsbs (if any) in the WBAC set are candidates for modification. 
Fig. 8a shows a hypothetical tuple distribution with one msb 
and two lsbs in the WBA columns set and Fig. 8b shows the 
uniform final tuple distribution on the watermark bits after the 
appropriate modification of the two lsbs in the WBA set. 
 

 ����                   

 ����      ����             

 ����     ���� ����             

���� ����     ���� ����     ���� ���� ���� ���� ���� ���� ���� ���� 

���� ����  ����  ���� ���� ���� re-arrangement ���� ���� ���� ���� ���� ���� ���� ���� 

0 1 0 1 1 1 0 1 
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Figure 8.  Modifying two lsbs address bits. 

After the final assignment of each tuple to a watermark bit, 
in Line 19 the marked bit of the tuple is modified by setting it 
to be equal to the corresponding watermark bit. In the example 
of Fig. 6a, since it had previously been decided that the marked 
bit of the tuple would be the one in the 12

th
 column of the 

rearranged R.B attribute, here the bit in the 12
th

 column will be 
set to 1, which is the value of the corresponding watermark bit. 
In Line 20, the (lsb) bits of the rearranged watermarked tuples 
are re-ordered into their original positions, carrying any 
modifications in the WBA bits set and in the marked bit. 

B. Watermark Decoding 

During the decoding process, an operation reverse to the 
encoding operation is performed, to extract the watermark W' 
from a suspicious database R' and compare it to the encoded 
watermark W. Therefore, Alice has to recall the parameters K 
and γ, together with the position of the WBAs columns set and 
the position of the marked bit in the rearranged version of R.A 
attribute. The algorithm is formally illustrated in Algorithm II. 

Algorithm II: the Decoding() operation 

Input: a suspicious relation R', the secret key K, the 
parameter •, and the position of the WBAs columns 
set together with the position of the marked bit 
in the rearranged version of R.A. 

Output:  an extracted watermark W' 

1: 

2: 

3: 

4: 

 

 

 

 

5: 

 

 

6: 

FOR each tuple r ∈ R DO 

 IF S(K || r.P) mod • = 0) THEN { 

  Re-arrange bits in r.A; 

  Based on the positions of the WBA columns set, 

   assign tuple r to a watermark bit of  

   an unknown watermark W' with length  

   equal to 2
|WBA column set|

 bits;  

  } 

 Based on the tuples which were assigned to each 

  watermark W' bit and also based on a majority  

  voting rule, construct the W' watermark; 

RETURN W';  // W' is the extracted watermark 

Algorithm II. The decoding algorithm. 

In order to discover whether a tuple has been marked, in the 
beginning, the decoding algorithm performs the same hash 
operation as the encoding algorithm. If the tuple has been 
marked, in Line 3 the decoding algorithm performs the same 
re-arrangement of bits as in the encoding. The rearranged bits 
that construct the WBA bits set are then extracted (for example, 
'011') and on this basis the selected tuple is assigned to the 
corresponding bit of an unknown watermark W' with length 
equal to the number of columns in the WBA columns set. In 
Line 5, the marked bit value is then extracted using a majority 
voting rule, and it is stored to construct a possible watermark 
W'. The watermark W' in the sequel needs to be compared to 
the marked watermark W and if they match or are similar, then 
ownership can be claimed. The similarity percentage between 
W' and W which provides a certainty with regard to whether or 
not the embedded watermark exists in the database is decided 
by the user, however, our experiments indicated that a 75% 
similarity between the extracted and the embedded watermark 
is a good choice. 

As an example, in Fig. 9 we may consider the tuple r with a 
watermarked r.A value which in binary form is 10101111 
01011100. We may assume also that the WBA column set is 
constructed by the 6

h
, 15

th
 and 14

th
 columns of the appropria-
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tely rearranged r.A attribute and that also the marked bit is in 
the 12

th
 column. The rearranged version of r.A has then to be 

constructed, which is depicted in Fig. 9. We now use the WBA 
column set {6, 15, 14} to get the address to the watermark bit: 
'101'. We also retrieve the marked bit from the 12

th
 column to 

get the watermark bit value: 1. Therefore, the watermark bit in 
the (101)2 = 5

th
 position of W' should have value 1. 
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Figure 9.  Rearranging the lsbs of the r.A attribute value of tuple r. 

If the inspected database has been maliciously modified, 
two different tuples assigned to the same watermark bit may 
have different marked bit values. To deal with this problem the 
decoding algorithm in Line 5 uses a majority voting rule of 1s 
or 0s, in order to estimate the correct value of the assigned 
watermark bit. It does so by creating a counter for every 
watermark bit which is incremented if a tuple assigned to this 
watermark bit indicates that the watermark bit's value should 
be 1 or decremented if the watermark bit's value should be 0. 
Once all tuples have been processed, the watermark bit's value 
is set to 1 if the counter is positive and greater than a specified 
threshold value, or it is set to 0 if its counter is negative and 
smaller than the negative threshold value; otherwise the 
watermark bit has an unknown value. 

V. DISCUSSION 

A. Encoding by grouping without the need to store large 

group-related information 

The proposed scheme embeds the watermark on the group 
basis. The tuples are uniformly divided into |W| groups, using a 
mixed sequence of log2|W| msbs and lsbs of the attribute that 
will be watermarked and, afterwards, one bit of watermark 
information is stored in each group. Therefore, the only infor-
mation which needs to be saved in a safe storage regarding this 
process is log2|W| + 1 short integer values. It is obvious that a 
great advantage of the proposed method against other group-
based watermarking techniques (such as [11, 12]) is that there 
is no need to store large quantities of information related to the 
constructed groups of tuples, like the number of groups, the 
number of tuples in each group, the tuples that define the 
borders of each group, the parameters of the function which 
distributed the tuples in the groups, and any other related 
information regarding the groups' content. Therefore the 
proposed method offers an almost blind decoding process.  

B. Database updates 

If the need to update the watermarked database arises, it 
will definitely affect the encoded watermark. To ensure the 
robustness of the watermark, we only need to watermark the 
modified tuples in order to keep the distribution of tuples per 
watermark bit as uniform as possible. This operation will not 
affect the rest of tuples in the database. This is another 
advantage of the proposed scheme over other similar schemes 

which need to re-watermark the whole database relation or at 
least the tuples that are enlisted in the same group with the 
modified tuples (for example, [11, 21]). 

C. Regarding databases without a primary key 

In the proposed scheme it is assumed that the database to be 
watermarked has a primary key. The primary key is used for 
sorting the tuples' (msbs and) lsbs columns. For databases 
without a primary key, we can easily incorporate the scheme in 
[9], where a virtual primary key can be constructed from some 
msbs of each tuple's attributes. 

D. For error-intolerant databases 

It is assumed that the database relation to be watermarked 
has only numeric attributes and can tolerate small errors 
introduced by watermark encoding algorithm. The proposed 
scheme can easily be modified to be applicable if a database 
relation does not have numeric attributes or if the numeric 
attributes cannot tolerate any modifications. For example, 
instead of changing the lsbs values, an extra attribute can be 
created to store the watermark.  

VI. EXPERIMENTS 

Some experimental results that illustrate the robustness of 
the proposed method are presented in the sequel. The 
experiments we performed using database relations containing 
two integer attributes with uniformly distributed synthetic data, 
one attribute serving as the primary key and one as the attribute 
to be watermarked. We ran experiments on an Oracle Database 
11g Release 2 using Oracle Call Interface (OCI) connectivity 
on a Windows 7 workstation. Each experiment cycle is compri-
sed of three phases: a watermark encoding operation, an attack 
and a watermark decoding operation. The performed attacks 
are the subset-deletion attack, the randomised-flipping attack 
and the bit-setting attack. Comparative attacks are not effective 
because we assume that the same watermark is embedded in 
every version of a relation, therefore there is no meaning in the 
search for differences between versions of the same watermar-
ked relation. The output of each experiment cycle is the 
detection success rate, i.e. the fraction of bits of the extracted 
watermark W' that match with the embedded watermark W. 
Every experiment was repeated ten times, each time with a 
different synthetic database.  

A. The Role of the Size of the Watermark 

In this experiment the parameters that appear in Table II 
remain constant. We ran experiments with the following 
watermark sizes (in bits): 1K, 2K, 4K, 8K, and 16K. The 
benchmark database contains 10,000 tupes and we mark all of 
them, i.e. γ = 1. 

The first attack to be reported in Fig. 10a is the subset-
deletion attack. By deleting the 0.2 fraction of the tuples we 
mean that the malicious user keeps only 80% of the initial 
tuples. The results are somehow expected since each tuple in 
the remaining database relation will make a correct match 
because every tuple is marked and also 'untouched' by the 
attack. For example if we delete the 0.7 fraction of the dataset, 
the remaining database will contain about 3,000 tuples which 
are uniformly distributed over the watermark bits. Thus, the 
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detection success rate is analogous to the number of 
watermarked tuples attached to each watermark bit. Therefore, 
the smaller the watermark, the higher the retrieval success, for 
every fraction of deleted tuples. For example, for a small 
watermark of 1K bits and by deleting 95% of the database 
tuples, 40% of the watermark will survive.  

TABLE II.  PARAMETERS USED IN THE EXPERIMENTS STUDYING 

THE ROLE OF THE SIZE OF THE WATERMARK. 

Database size (in tuples): 10,000 

Number ξ of lsbs: 6 

Percentage of marked tuples: 100% 

Number of bits modified by the attack per tuple (applies  

only to randomized bit-flipping and bit-setting attacks): 
2 

 

Another interesting conclusion is regarding the importance 
of the appropriate selection of the watermark size in respect to 
the size of the database. For example, in the graph we may see 
that for a watermark of 16K bits, the detection success rate is 
low, mainly because the database size in tuples is smaller than 
the watermark size in bits, which means that not all the 
watermark bits were recorded into the database. 

   

 (a) (b) 
Figure 10.  Evaluation of the robustness of the method with regard to the 

watermark size in (a) subset-deletion attack, and (b) bit-setting attack. 

The results in both randomized bit-flipping and bit-setting 
attacks are quite similar; therefore, we illustrate in Fig. 10b 
only the results for the bit-setting attack. When the fraction of 
tuples modified by the attack is small, we get a high detection 
success rate. However, when the tuples modified by the attack 
increase, the graph indicates that the watermark size affects 
almost linearly the watermark retrieval. Therefore, the higher 
the percentage of tuples modified by the attack, the smaller the 
watermark needs to be in order to survive. 

B. The Role of the Number of Available lsbs 

The values for the most important parameters are depicted 
in Table III. The graph in Fig.11b for the randomized bit-
flipping attack shows that the efficiency of the watermarking 
method improves slightly when the number ξ of lsbs increases. 
This happens because the increase of available number ξ of 
lsbs allows the watermarking method to spread the marked bit 
and the WBA bits in more bit columns in order to achieve 
uniform assignment of tuples in groups (Line 10 of the 
encoding algorithm). Therefore, the more lsbs are used by the 
encoding algorithm, the higher the percentage of the survived 
watermark fraction is, since it is also more likely to not invert a 
bit that is used by the algorithm. In the subset-deletion attack, 
by definition the bits are not modified, therefore this 
conclusion does not apply in Fig. 11a; hence the watermark 
retrieval success rate depends only in the fraction of the tuples 
modified by the attack. 

TABLE III.  PARAMETERS USED IN THE EXPERIMENTS STUDYING 

THE ROLE OF THE NUMBER OF AVAILABLE LSBS. 

Database size (in tuples): 10,000 

Watermark size (in bits): 2,048 

Percentage of marked tuples: 100% 

Number of bits modified by the attack per tuple (applies  

only to randomized bit-flipping and bit-setting attacks): 

2 

 

   

 (a) (b) 

Figure 11.  Evaluation of the robustness of the method with regard to the 

number of available lsbs in (a) subset-deletion attack, and (b) randomized bit-

flipping attack.  

C. The Role of the Percentage of Marked Tuples 

The values for the most important parameters are depicted 
in Table IV. We ran experiments for the following percentages 
of marked tuples: 10%, 15%, 20%, 25% and 30%. The results 
in Fig. 12a and Fig. 12b for this experiment are as expected. 
The overall conclusion is that when everything else remains 
unchanged, the percentage of the watermarked tuples affects 
linearly the detection success rate of the watermark. 

TABLE IV.  PARAMETERS USED IN THE EXPERIMENTS STUDYING 

THE ROLE OF THE PERCENTAGE OF MARKED TUPLES. 

Database size (in tuples): 5,000 

Number ξ of lsbs: 6 

Watermark size (in bits): 1,024 

Number of bits modified by the attack per tuple (applies  

only to randomized bit-flipping and bit-setting attacks): 

2 

 

   

 (a) (b) 

Figure 12.  Evaluation of the robustness of the method with regard to the 

percentage of the marked tuples in (a) subset-deletion attack, and, (b) bit-

setting attack. 

D. The Role of the Ratio of Marked Tuples Over the 

Watermark Size 

Table V illustrates the selected values for the parameters 
that were used in this experiment. Regarding to the number of 
tuples in the database and the watermark size, the following 
pair of values (in the <number of tuples, watermark size in 
bits> form) were used: <2,500, 0.5K>, <5,000, 1K>, <10,000, 
2K>, <20,000, 4K>, <40,000, 8K>. 
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TABLE V.  PARAMETERS USED IN THE EXPERIMENTS STUDYING THE 

ROLE OF THE RATIO OF MARKED TUPLES OVER THE 

WATERMARK SIZE. 

Number ξ of lsbs: 6 

Percentage of marked tuples: 50% 

Number of bits modified by the attack per tuple (applies  

only to randomized bit-flipping and bit-setting attacks): 

2 

 

  

 (a) (b) 
Figure 13.  Evaluation of the robustness of the method with regard to the ratio 

of marked tuples over the watermark size in (a) subset-deletion attack, and, (b) 

randomized bit-flipping attack. 

The graphs in Fig. 13a and Fig. 13b show that as long as 
the ratio of marked tuples over the watermark size remains 
constant, the algorithm's robustness remains constant as well. 
The important consequence of this observation is that in case 
we have a very large database to watermark, we can estimate 
the robustness of the proposed algorithm with a random 
fraction of the database tuples and a correspondingly smaller 
random fraction of the watermark bits. 

VII. CONCLUSION 

The paper proposes an algorithm for watermarking numeric 
relational data. The algorithm sorts the bits of each tuple in a 
secret order and selects some of its data bits to route the tuple 
to a specific watermark bit and one data bit to be marked by the 
value of the assigned watermark bit. We showed that the 
algorithm can be easily implemented. Experimental study 
pointed to the robustness of the proposed scheme for a variety 
of parameter settings and of possible attacks. The study shows 
that the proposed scheme can be widely used in copyright 
protection. It is worth noting that, for the sake of simplicity, in 
the experimental study we did not adopt any error correction 
mechanism [22] to make the watermark more robust against 
the various kinds of attacks. In real-world applications it is 
expected that this methodology will protect the embedded 
information against noises; error correcting codes exist that 
have a correcting ability up to approximately 25% of the 
occurred errors [23]. 

In the future we aim at making correct watermark recovery 
decisions in view of other types of attacks, for example, brute 
force and mix-and-match attacks. We also plan to extent the 
proposed method to be used as a fragile watermarking scheme 
as well, for data authentication proposes, for example, by assig-
ning properly a single data tuple to each watermark bit. Further 
research should also investigate new, non-numeric encoding 
domains, that is, categorical and alphanumeric attributes. 
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